Case 1:13-cv-00440-LPS Document 6 Filed 03/26/13 Page 1 of 9 PagelD #: 102

IN THE UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF DELAWARE

INTELLECTUAL VENTURES | LLC and
INTELLECTUAL VENTURES Il LLC,

Plaintiffs, Civil Action No. 13-cv-440-LPS
V. JURY TRIAL DEMANDED
SYMANTEC CORP.,
Defendant.

FIRST AMENDED COMPLAINT FOR PATENT INFRINGEMENT

Plaintiffs Intellectual Ventures I LLC (“Intellectual Ventures 1”) and Intellectual
Ventures Il LLC (“Intellectual Ventures 11””), by their undersigned attorneys, hereby allege as
follows:

1. This is an action for patent infringement arising under the patent laws of the
United States, Title 35 of the United States Code.

2. Intellectual Ventures | is a corporation organized and existing under the laws of
Delaware, with a principal place of business located in Bellevue, Washington.

3. Intellectual Ventures Il is a corporation organized and existing under the laws of
Delaware, with a principal place of business located in Bellevue, Washington.

4. Defendant Symantec Corporation (“Symantec”) is a corporation organized and
existing under the laws of Delaware, with a principal place of business in Mountain View,
California. Symantec transacts substantial business, either directly or through its agents, on an

ongoing basis in this judicial district and elsewhere in the United States.

Case 1:13-cv-00440-LPS Document 6 Filed 03/26/13 Page 2 of 9 PagelD #: 103

5. Unless specifically stated otherwise, the acts complained of herein were
committed by, on behalf of, and/or for the benefit of Symantec.

JURISDICTION AND VENUE

6. This Court has subject matter jurisdiction pursuant to 28 U.S.C. 8§ 1331 and
1338(a).

7. This Court has personal jurisdiction over Symantec because Symantec is
incorporated in the State of Delaware.

8. Venue is proper in this District pursuant to 28 U.S.C. 88 1391 and 1400(b).

COUNT 1 - INFRINGEMENT OF U.S. PATENT NO. 5,537,533

9. On July 16, 1996, United States Patent No. 5,537,533 (“the ’533 patent”) was
duly and legally issued for an invention entitled “System and method for remote mirroring of
digital data from a primary network server to a remote network server.” Intellectual Ventures Il
is the owner of the *533 patent and holds all rights and interests in the 533 patent. A true and
correct copy of the 533 patent is attached hereto as Exhibit A.

10. Symantec has infringed and continues to infringe one or more claims of the ’533
patent by its manufacture, use, sale, importation, and/or offer for sale of certain storage software
products, including but not limited to Symantec’s Replicator and Veritas Volume Replicator
products. Symantec is liable for its infringement of the 533 patent pursuant to 35 U.S.C. § 271.

11. Symantec actively, knowingly, and intentionally has induced, and continues to
actively, knowingly, and intentionally induce, infringement of the ’533 patent by making, using,
offering for sale, importing, and selling certain storage software products, including but not
limited to Symantec’s Replicator and Veritas Volume Replicator products, as well as by
contracting with others to use, market, sell, offer to sell, and import such products, all with

knowledge of the 533 patent and its claims; with knowledge that its customers and end users

Case 1:13-cv-00440-LPS Document 6 Filed 03/26/13 Page 3 of 9 PagelD #: 104

will use, market, sell, offer to sell, and import such products; and with the knowledge and the
specific intent to encourage and facilitate those infringing sales and uses of such products
through the creation and dissemination of promotional and marketing materials, instructional
materials, product manuals, and technical materials.

12. Symantec also has contributed to the infringement by others, including the end
users of certain storage software products, including but not limited to Symantec’s Replicator
and Veritas Volume Replicator products, and continues to contribute to infringement by others,
by selling, offering to sell, and importing such products into the United States, knowing that
those products constitute a material part of the inventions of the ’533 patent, knowing those
products to be especially made or adapted to infringe the *533 patent, and knowing that those
products are not staple articles or commodities of commerce suitable for substantial non-
infringing use.

13. Symantec has had knowledge of and notice of the *533 patent and its infringement
since at least, and through, the filing and service of the Complaint and despite this knowledge
continues to commit the aforementioned infringing acts. In addition, Symantec has had
knowledge of the ’533 patent at least since December 3, 2009, when Symantec referenced the
’533 patent in an information disclosure statement during the prosecution of Symantec’s U.S.
Patent No. 7,664,983, App. No. 11/215,958.

14. Symantec’s acts of infringement have caused damage to Intellectual Ventures II,
and Intellectual Ventures Il is entitled to recover from Symantec the damages it has sustained as
a result of Symantec’s wrongful acts in an amount subject to proof at trial. Symantec’s

infringement of Intellectual Ventures 11’s exclusive rights under the *533 patent will continue to

Case 1:13-cv-00440-LPS Document 6 Filed 03/26/13 Page 4 of 9 PagelD #: 105

damage Intellectual Ventures Il, causing irreparable harm for which there is no adequate remedy
at law, unless enjoined by this Court.

15. Upon information and belief, Symantec’s infringement of the 533 patent is
willful and deliberate, entitling Intellectual Ventures Il to increased damages under 35 U.S.C.
8 284 and to attorneys’ fees and costs incurred in prosecuting this action under 35 U.S.C. § 285.
Some of Symantec’s own patents, such as U.S. Patent Nos. 6,144,992 and 7,664,983, indicate
Symantec had actual knowledge of the *533 patent before this suit was filed. Nevertheless,
Symantec has infringed and continues to infringe the *533 patent despite an objectively high
likelihood that its actions constitute infringement.

COUNT Il - INFRINGEMENT OF U.S. PATENT NO. 6,598,131

16. On July 22, 2003, United States Patent No. 6,598,131 (“the *131 patent”) was
duly and legally issued for an invention entitled “Data image management via emulation of non-
volatile storage device.” Intellectual Ventures Il is the owner of the *131 patent and holds all
rights and interests in the 131 patent. A true and correct copy of the 131 patent is attached
hereto as Exhibit B.

17. Symantec has infringed and continues to infringe one or more claims of the *131
patent by its manufacture, use, sale, importation, and/or offer for sale of certain storage software
products, including but not limited to Symantec’s Replicator and Veritas Volume Replicator
products. Symantec is liable for its infringement of the 131 patent pursuant to 35 U.S.C. § 271.

18. Symantec actively, knowingly, and intentionally has induced, and continues to
actively, knowingly, and intentionally induce, infringement of the *131 patent by making, using,
offering for sale, importing, and selling certain storage software products, including but not
limited to Symantec’s Replicator and Veritas Volume Replicator products, as well as by

contracting with others to use, market, sell, offer to sell, and import such products, all with

Case 1:13-cv-00440-LPS Document 6 Filed 03/26/13 Page 5 of 9 PagelD #: 106

knowledge of the 131 patent and its claims; with knowledge that its customers and end users
will use, market, sell, offer to sell, and import such products; and with the knowledge and the
specific intent to encourage and facilitate those infringing sales and uses of such products
through the creation and dissemination of promotional and marketing materials, instructional
materials, product manuals, and technical materials.

19. Symantec also has contributed to the infringement by others, including the end
users of certain storage software products, including but not limited to Symantec’s Replicator
and Veritas Volume Replicator products, and continues to contribute to infringement by others,
by selling, offering to sell, and importing such products into the United States, knowing that
those products constitute a material part of the inventions of the *131 patent, knowing those
products to be especially made or adapted to infringe the *131 patent, and knowing that those
products are not staple articles or commodities of commerce suitable for substantial non-
infringing use.

20. Symantec has had knowledge of and notice of the 131 patent and its infringement
since at least, and through, the filing and service of the Complaint and despite this knowledge
continues to commit the aforementioned infringing acts. In addition, Symantec has had
knowledge of the *131 patent at least since September 30, 2005, when Symantec first referenced
the *131 patent in an information disclosure statement during the prosecution of Symantec’s U.S.
Patent No. 7,673,130, App. No. 11/239,922; May 15, 2007, when Symantec first referenced the
’131 patent in an information disclosure statement during the prosecution of Symantec’s U.S.
Patent No. 7,702,892, App. No. 11/243,129; and March 6, 2008, when Symantec first referenced
the *131 patent in an information disclosure statement during the prosecution of Symantec’s U.S.

Patent No. 7,496,920, App. No. 11/767,666.

Case 1:13-cv-00440-LPS Document 6 Filed 03/26/13 Page 6 of 9 PagelD #: 107

21. Symantec’s acts of infringement have caused damage to Intellectual Ventures I,
and Intellectual Ventures 1l is entitled to recover from Symantec the damages it has sustained as
a result of Symantec’s wrongful acts in an amount subject to proof at trial. Symantec’s
infringement of Intellectual Ventures I1’s exclusive rights under the *131 patent will continue to
damage Intellectual Ventures Il, causing irreparable harm for which there is no adequate remedy
at law, unless enjoined by this Court.

22. Upon information and belief, Symantec’s infringement of the ’131 patent is
willful and deliberate, entitling Intellectual Ventures Il to increased damages under 35 U.S.C.
8 284 and to attorneys’ fees and costs incurred in prosecuting this action under 35 U.S.C. § 285.
Many of Symantec’s own patents, such as U.S. Patent Nos. 6,986,033, 7,058,797, 7,069,428,
7,222,229, 7,496,920, 7,506,151, 7,577,806, 7,577,807, 7,584,337, 7,631,120, 7,673,130,
7,702,892, 7,725,667, 7,725,760, 7,730,222, 7,792,125, 7,827,362, 7,836,292, 7,895,424,
7,904,428, 7,991,748, 8,037,289, 8,051,028, and 8,095,488, indicate Symantec had actual
knowledge of the *131 patent before this suit was filed. Nevertheless, Symantec has infringed
and continues to infringe the *131 patent despite an objectively high likelihood that its actions
constitute infringement.

COUNT 111 - INFRINGEMENT OF U.S. PATENT NO. 6,732,359

23. On May 4, 2004, United States Patent No. 6,732,359 (“the *359 patent”) was duly
and legally issued for an invention entitled “Application process monitor.” Intellectual
Ventures | is the owner of the *359 patent and holds all rights and interests in the 359 patent. A
true and correct copy of the *359 patent is attached hereto as Exhibit C.

24. Symantec has infringed and continues to infringe one or more claims of the *359

patent by its manufacture, use, sale, importation, and/or offer for sale of certain availability and

Case 1:13-cv-00440-LPS Document 6 Filed 03/26/13 Page 7 of 9 PagelD #: 108

clustering software products, including but not limited to Symantec’s ApplicationHA products.
Symantec is liable for its infringement of the *359 patent pursuant to 35 U.S.C. § 271.

25. Symantec actively, knowingly, and intentionally has induced, and continues to
actively, knowingly, and intentionally induce, infringement of the *359 patent by making, using,
offering for sale, importing, and selling certain availability and clustering software products,
including but not limited to Symantec’s ApplicationHA products, as well as by contracting with
others to use, market, sell, offer to sell, and import such products, all with knowledge of the *359
patent and its claims; with knowledge that its customers and end users will use, market, sell,
offer to sell, and import such products; and with the knowledge and the specific intent to
encourage and facilitate those infringing sales and uses of such products through the creation and
dissemination of promotional and marketing materials, instructional materials, product manuals,
and technical materials.

26. Symantec also has contributed to the infringement by others, including the end
users of certain availability and clustering software products, including but not limited to
Symantec’s ApplicationHA products, and continues to contribute to infringement by others, by
selling, offering to sell, and importing such products into the United States, knowing that those
products constitute a material part of the inventions of the *359 patent, knowing those products to
be especially made or adapted to infringe the 359 patent, and knowing that those products are
not staple articles or commodities of commerce suitable for substantial non-infringing use.

27. Symantec has had knowledge of and notice of the 359 patent and its infringement
since at least, and through, the filing and service of the Complaint and despite this knowledge

continues to commit the aforementioned infringing acts.

Case 1:13-cv-00440-LPS Document 6 Filed 03/26/13 Page 8 of 9 PagelD #: 109

28. Symantec’s acts of infringement have caused damage to Intellectual Ventures I,
and Intellectual Ventures | is entitled to recover from Symantec the damages it has sustained as a
result of Symantec’s wrongful acts in an amount subject to proof at trial. Symantec’s
infringement of Intellectual Ventures I’s exclusive rights under the *359 patent will continue to
damage Intellectual Ventures I, causing irreparable harm for which there is no adequate remedy
at law, unless enjoined by this Court.

JURY DEMAND

29. Pursuant to Rule 38(b) of the Federal Rules of Civil Procedure, Intellectual
Ventures | and Intellectual Ventures Il respectfully request a trial by jury on all issues.

PRAYER FOR RELIEF

WHEREFORE, Plaintiffs Intellectual Ventures | and Intellectual Ventures Il request
entry of judgment in their favor and against Symantec as follows:

a. Declaring that Symantec has infringed U.S. Patent Nos. 5,537,533, 6,598,131, and
6,732,359;

b. Awarding the damages arising out of Symantec’s infringement of U.S. Patent
Nos. 5,537,533, 6,598,131, and 6,732,359, including enhanced damages pursuant to 35 U.S.C. §
284, to Intellectual Ventures | and Intellectual Ventures 11, together with prejudgment and post-
judgment interest, in an amount according to proof;

C. Permanently enjoining Symantec and its officers, agents, employees, and those
acting in privity with it, from further infringement, including contributory infringement and/or
inducing infringement, of U.S. Patent Nos. 5,537,533, 6,598,131, and 6,732,359;

d. Awarding attorneys’ fees pursuant to 35 U.S.C. 8§ 285 or as otherwise permitted

by law; and

Case 1:13-cv-00440-LPS Document 6 Filed 03/26/13 Page 9 of 9 PagelD #: 110

e. Awarding such other costs and further relief as the Court may deem just and

proper.

DATED: March 26, 2013 Respectfully submitted,
FARNAN LLP

By: /s/ Brian E. Farnan

Joseph J. Farnan 111 (Bar No. 3945)
Brian E. Farnan (Bar No. 4089)

919 North Market Street, 12th Floor
Wilmington, Delaware 19801
Telephone: (302) 777-0300
Facsimile: (302) 777-0301
bfarnan@farnanlaw.com

ATTORNEYS FOR PLAINTIFFS
INTELLECTUAL VENTURES I LLC and
INTELLECTUAL VENTURES Il LLC

OF COUNSEL.:

Parker C. Folse 111 (WA State Bar No. 24895)
Brooke A.M. Taylor (WA State Bar No. 33190)
Daniel J. Shih (WA State Bar No. 37999)
Jordan Talge (WA State Bar No. 45612)
SUSMAN GODFREY L.L.P.

1201 Third Avenue, Suite 3800

Seattle, Washington 98101-3000

Telephone: (206) 516-3880

Facsimile: (206) 516-3883
pfolse@susmangodfrey.com
btaylor@susmangodfrey.com
dshih@susmangodfrey.com
jtalge@susmangodfrey.com

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 1 of 53 PagelD #: 111

EXHIBIT A

R T

United States Patent [
Staheli et al.

US005537533A
(111 Patent Number:
(451 Date of Patent:

5,537,533
Jul. 16, 1996

[54] SYSTEM AND METHOD FOR REMOTE
MIRRORING OF DIGITAL DATA FROM A
PRIMARY NETWORK SERVER TO A
REMOTE NETWORK SERVER

[75] Inventors: Vaughn Staheli, Payson; Mike Miller,

Pleasant Grove; Sam Francis; Dan
Haab, both of Springville; Dan Patten,
Orem; Kent Johnson, Spanish Fork, all
of Utah

[73] Assignee: Miralink Corporation, Orem, Utah

[21] Appl. No.: 289,902

[22] Filed: Aug. 11, 1994

[51] Imt. CL® GO6F 12/16

[52] US.Cl e 395/182.03; 395/182.18

[58] Field of Searchcrvnmvcrrvrcvninnnn 395/575, 200,

395/182.03, 182.04, 182.05, 182.13, 182.18

[56] References Cited

U.S. PATENT DOCUMENTS
4,274,139 6/1981 Hodgkinson et al.occceveneee 364/200
4,654,819 3/1987 Stiffler et al. 3647900
4,819,159 4/1989 Shipley et al. .. . 364/200
4,959,768 9/1990 Gerhart 364/187
5,051,887 9/1991 Bergeret al. 364/200
5,133,065 7/1992 Cheffetz et al. ... 395/575
5,157,663 10/1992 Major et al. ...covceeecrnvcrisseennns 371/9.1
5,163,131 11/1992 Row et al. 395/200
5,167,032 11/1992 Martin et al. 395/575
5,185,884 2/1993 Martin et al. 395/575
5,212,784 5/1993 Sparks 3951575
5,241,670 8/1993 Eastridge et al. .cccccvveerrerconae 385/575
5,263,154 11/1993 Eastridge et al. 395/575
5,379,417 171995 Luietal. ...cocermeerrnerereecnnns 395/575
FOREIGN PATENT DOCUMENTS
PCT/US94/

04326 4/2094 WIPO .

OTHER PUBLICATIONS

“Remote StandbyServer”, Vinca Corporation, Product
Amnouncement, Sep. 12, 1994.

“Network Server”, Product Depot, Sep. 1994, pp. 59-60.
“Network Management—Controlling and Optimizing Net-
work Environments”, Claudia Graziano, LAN Times, Jul. 11,
1994, p. 50.

Emerald Systems U.S.A. & Canada Retail Price List, effec-
tive Jul. 1, 1994,

“System Fault Tolerance With No Strings Attached”, Brad-
ley F. Shimmin, LAN Times, Feb. 28, 1994, vol. 11, Issue 4.
“Playing the Odds”, Gary Gunnerson et al., PC Magazine,
Oct. 26, 1993, v12, n18, pp. 285(28).

“Bulletproofing Your Server”, David P. Chernicoff, PC
Week, Oct. 4, 1993, v10, n39, pN1(3).

“Year-Old NetWare SFT II Still Incomplete: Support for
UNIX”, Patrick Dryden, LAN Times, Oct. 4, 1993, v10, n20,
pl(2).

(List continued on next page.)

Primary Examiner—Robert W. Beausoliel, Jr.
Assistant Examiner—Alan M. Fisch
Attorney, Agent, or Firm—Madson & Metcalf

ABSTRACT

A system for remote mirroring of digital data from a primary
network server to a remote network server includes a
primary data transfer unit and a remote data transfer unit
which are connectable with one another by a conventional
communication link. The primary data transfer unit sends
mirrored data from the primary network server over the link
to the remote data transfer unit which is located a safe
distance away. Each data transfer unit includes a server
interface and a link interface. The server interface is viewed
by the network operating system as another disk drive
controller. The link interface includes four interconnected
parallel processors which perform read and write processes
in parallel. The link interface also includes a channel service
unit which may be tailored to commercial communications
links such as T1, E1, or analog telephone lines connected by
modems.

[57]

34 Claims, 40 Drawing Sheets

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 3 of 53 PagelD #: 113

5,537,533
Page 2

OTHER PUBLICATIONS

“On The Edge with SFT III”, Patrick Dryden, LAN Times,
Oct. 4, 1993, v10, n20, p1(3).

“SFT Level III Protection, But Without The Big Price Tag”,
LAN Times, Oct. 4, 1993, v10, n20, p101(7).

“Third—Party NLM Allows Multiple NIC’s In Server”, Eric
Smalley, PC Week, Sep. 27, 1993, v10, n38, p73(1).

“An SFT Safety Net”, Howard Lubert, LAN Magazine, Aug.
1993, v8, n8, p95(4).

“Startup NetGuard Systems Offers Alternative to SFT 1117,
Patrick Dryden, LAN Times, Jul. 26, 1993, v10, nl4, p7(1).
“Wired for the Future: 100M-bps Technology to Expand
Networking Bandwidth”, David P. Chernicoff, PC Week,
Mar. 15, 1993, v10, n10, p49(3).

“Research Report—Disk Mirroring with Alternating
Deferred Updates”, Christos A. Polyzios et al., Computer
Science, Mar. 4, 1993, pp. 1-25.

“Pipeline”, InfoWorld, Mar. 8, 1993, v15, nl0, p25(1).
“Mirrored NetWare Now Sold in Smaller Packs; Novell
Ships SFT III”, Florence Olson, Government Computer
News, Feb. 15, 1993, v12, n4, p21(1).

“Fault-Tolerance App Gains Windows Support: Clone
Star’s Reflect 4.0 Takes on SFT III”, Nico Krohn, PC Week,
Feb. 15, 1993, v10, n6, p47(2).

“Finally, Fault-Tolerant LANSs: a new Offshoot of NetWare
Brings New Reliability, But Only to Limited Applications”,
Tracey Capen, Corporate Computing, Feb. 1993, v2, n2,
p45(2).

“So You Need/Want Fault Tolerance? Don’t Jump to Solu-
tions”, Paul Merenbloom, InfoWorld, Jan. 25, 1993, v15, n4,
p38(1).

“System Fault Tolerance”, Rodney Gallie, InfoWorld, Jan.
25, 1993, v15, n4, p65(1).

“Novell Ships Commercial Version of SFT III ”’, Nico Kohn,
PC Week, Jan. 18, 1993, v10, n2, p18(1).

“Novell Adds Fault Tolerance to NetWare”, The Seybold
Report on Desktop Publishing, Jan. 6, 1993, v7, n5, p32(1).
“Tradeoffs in Implementing Primary-Backup Protocols”,
Navin Budhiraja and Keith Marzullo, Department of Com-
puter Science—Cornell University, Oct. 1992, pp. 1-18.
“Research Report—Evaluation of Remote Backup Algo-
rithms for Transaction Processing Systems”, Christos A.
Polyzois, Computer Science, Oct. 14, 1992, Department of
Computer Science, Stanford University, pp. 1-35.
“Optimal Primary-Backup Protocols”, Navin Budhiraja et
al., Department of Computer Science, Cornell University,
Aug. 1992, pp. 1-18.

“Performance of a Parallel Network Backup Manager”,
James da Silva et al., Computer Science Technical Report
Series, Apr. 1992, pp. 1-13.

“A Cached WORM File System”, Sean Quinlan, Software—
Practice and Experience, Dec. 1991, vol. 21(12), pp.
1289-1299. ‘
“Management of a Remote Backup Copy for Disaster
Recovery”, Richard P. King et al., ACM Transactions on
Database Systems, Jun. 1991, vol. 16, No. 2, pp. 338-368.
“Performance of a Mirrored Disk in a Real-Time Transac-
tion System”, Shenze Chen and Don Towsley, ACM Sig-
metrics Performance Evaluation Review, May 1991, pp.
198-207.

“A Comparison of Two Approaches to Build File Servers”,
Anupam Bhide et al., 11th International Conference on
Distributed Computing Systems, pp. 616-623.

“Tandem’s Remote Data Facility”, Jim Lyon, Computer
Conference, 1990, pp. 562-567.

“Issues in Disaster Recovery”’, Hector Garcia—Molina and
Christos A. Polyzois, Department of Computer Science,
Princeton University, Computer Conference 1990, pp.
573-577.

“Design Approaches for Real-Time Transaction Processing
Remote Site Recovery”, D. L. Burkes and R. K. Treiber,
Data Base Technology Institute, IBM Almaden Research
Center, Computer Conference 1990, pp. 568-572.
“Allocating Primary and Back-up Copies of Databases in
Distributed Computer Systems: a Model and Solution Pro-
cedures”, Hasan Pirkul and Yu-Ping Hou, Coliege of Busi-
ness, The Ohio State University, Computers Opns Res.,
1989, vol. 16, No. 3, pp. 235-245.

“Message—Optimal Incremental Snapshots”, S. Venekate-
san, Department of Computer Science, University of Pitts-
burgh, 9th International Conference on Distributed Comput-
ing Systems, 1989, pp. 53-60.

“PC Network Services for Distributed System Design”,
Gregory Ennis, Systek, Incorporated, Spring Computer Con-
ference, 1986, pp. 155-160.

“Multi-Copy Workstation Databases”, Fred Maryanski,
University of Connecticut, Spring Computer Conference,
1985, pp. 50-53.

“Tape Backup and Network Storage Management”, Emerald
Systems Product Overview brochure.

“XpressSERVE Enterprise Software Highest—Performance,
Server-Based Network Backup”, Emerald Systems product
brochure.

“Xpress Shadow Software Flexible Server Mirroring”,
Emerald Systems product brochure.

“Extra Value XpressSERVE & Xpress Librarian Bundled
Solution”, Emerald Systems product brochure.

“4 mm & 8 mm AutoLoaders for Total Automation”, Emer-
ald Systems product brochure.

“PC and LAN Servers”, Network Solutions Systems infor-
mation brochure.

“Network and Communications Solutions”, Network Solu-
tions Systems information brochure.

Quest Software information brochure.
“Octopus”, P & W Technologies, Inc. product brochure.

“Octopus Real Time Data Protection”, P & W Technologies,
Inc. product description.
“~No*Stop—No*Stop~No*Stop~", Nonstop Networks Lim-
ited product brochure.

“Chapter 1: Introduction”, LANshadow 4.0, pp. 1-37.
“Netware SFT III 3.11—Disaster Prevention Solution”; Net-
world+Interop94 product brochure.

“Server Design tailored to SFTII . . . ,” InfoWorld, Feb. 8,
1993, v15, n6, p29(1).

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 4 of 53 PagelD #: 114

U.S. Patent Jul. 16, 1996 Sheet 1 of 40 5,537,533

v

{
4
FIG. 1

/14
§30 §34

10
— 16
T~

}

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 5 of 53 PagelD #: 115

U.S. Patent Jul. 16, 1996 Sheet 2 of 40 5,537,533
34
32 80 f/ 60
70
ya - , o r
62
j L1 } 1 -
78 86
L L
Server (78
Interface L — Csu ‘Qo
[80
LO
L1
T3
L2 86
L3 J
R | 84
LO L/
i %
64 L2
i Lo 13 a
60 8\ g5
NVB
Boot \ g
TRAM Lo
\-80 L1
L2 T1 /74
LCD -
/‘72
Keypad
AUXPC
L76

FIG. 2

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 6 of 53 PagelD #: 116

U.S. Patent Jul. 16, 1996 Sheet 3 of 40 5,537,533

Transmit Events
|
T4 and T3 read data from the server

[
Send data to T2
|

T2 writes the data to the hard disk as well
as a local buffer.

T2 calculates a check sum and builds a
header for the block of data.

Is the CSU ready?

Place the data block in the CSU buffer.

Ready to send?

Send the data.
|
Transmit Events End

FIG. 3

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 7 of 53 PagelD #: 117

U.S. Patent Jul. 16, 1996

| During normal operation the }
| remote side of the Off-site :
 server will get no acknowledges. :
| The acknowledge shown here !

)

| only occurs at the primary side. |

Y
T4 sends the status word to T2

Sheet 4 of 40

5,537,533

Recieve Events

~

v

Q-

A packet of data arrives at the CSU
where it is placed in a buffer

T4 reads the status word from the
CSU buffer

Is this an

T2 clears the eniry from the
"data sent" table containing
the same id # as the status.

acknowledge?

YES

T4 reads the rest of the data packet from
the CSU while calculating a checksum.

Do the
checksums
match?

The data block is sent from T2.

T2 writes the data block to the hard disk.

T2 acknowledges the receipt of a
data packet.

FIG. 4

-5

Receive Events End

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 8 of 53 PagelD #: 118

U.S. Patent Jul. 16, 1996 Sheet 5 of 40 5,537,533

[-~ Remote DTU to remote server

Has the delay
time expired?

Is the block
following the current
one here?

T2 reads the current block of data
from the hard disk.

I
T2 transfers the block of data to T4.

T4 and T3, write the block of data
to the server.

p
L End of remote DTU to remote server

FIG. 5

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 9 of 53 PagelD #: 119

5,537,533

Sheet 6 of 40

Jul. 16, 1996

U.S. Patent

9 "OIA

a0epiBlu
eIV

ot o s
Jwsuesy ———>| 8AIBdal S
g y1 0} <«
| 17 peel
H H i
¢l opjusuel
s 341 e i
Joods z1 -
Yulj g1 pesl v £l
ol uatlonoed | _ :
alejnojed
nso ol
)il 1 pea! < L
O} Jusuex a T o
— 31
yoyedsip 9 21 0} Jiwsuel}
7L 7
> 07 pea!
Y ¥ F1
B 1anq T D —
m__“m%ﬁ.ﬂcoc Jiwsue Jwsues
[Blep 71 T

Ny

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 10 of 53 PagelD #: 120

U.S. Patent

5,537,533

Sheet 7 of 40

Jul. 16, 1996

o]

nsd

L "DIA

LTelM

- afipajmouyoe
A S DS B9
| 9|e|oA-uou]
CITERE)
Fl
m 1S peal
L
Joods joods
JWSUBY) |———— > 8AI808)
¢l woy L

| £l g
Jaynq
SAIgd8l
2171 077 S1M
g
ETE
JonBS
gAigd8l
£l — W
07 MM
| 11
18jnq [
angoal A g
ElEp b1
o

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 11 of 53 PagelD #: 121

U.S. Patent Jul. 16, 1996 Sheet 8 of 40 5,537,533
£Z<Z
PR
1 1 _1
— — N QN
-
— M
N~
QOO0
<000 N
Ql)
gt e e . e g e
<<<ONOO0OOoWl (N
Q| O~ 9 (o) S’_ TLD__ < SE .
|
S VAYAY ' NN\
022 095
B o1y
AN~ s
022 095
rAY Gy o0
V'V * NNV .
022 095)
ed viY o~
+AA—+ AN\ =
022 095
vy €ly
e VAYAY — NVN—
095 022
sY 2l
—VVV ' NN
095 022
od LY
T—/\N\' - NNV
095 022
L4 olH
AAN——] |

44— NN
) %

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 12 of 53 PagelD #: 122

U.S. Patent Jul. 16, 1996 Sheet 9 of 40 5,537,533
Z
o
|
q—
l_
=)
NI~
OO OO
IBOA 2
< D
Slpixirixl g
<0000 W [N
Nrﬂﬂﬂﬂﬂm¢m

FIG. 9

0¢¢ 099
Ged /cH
|
095 0ce
1£4=! 9cd

T4L0_IN+
T4LO_IN—-

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 13 of 53 PagelD #: 123

5,537,533

Sheet 10 of 40

Jul. 16, 1996

U.S. Patent

Rl (2)
. aNIa-NOD v
m =
< <] ano
. S ~NI_0¥L
o o |z +NITOPL
| e ° —{_>3dn |
Ol e o .w —<] +1no"0wL
o -1NO 0L
3
L
6 2d
= (9 — (v
1£S192 l—w 1£S192
v |OO T T 4 |OO [T
+00 [61— _ +00 |5t
—1a -og 1N0"12L la -od
SHi5 +oalg— 10072l SLLD +og |3
—Liig —ov|g [[inoToel 1IN0 kL lia —oviz
LNO 0L [D———H{IV +0v[3 +1NO 0L 1IN0 0TkL Y OV
6N €n

—€01
+€071
—c01
+2071
—1071
+1071
=001
+007

Il "OI4

5,537,533

(?)

YOOHY. 28STvL

1SH - SR g

v
arn geen

3 34n 1004
+—1 3HN

Sheet 11 of 40

Jul. 16, 1996

(9)

YOOHY. CESIVL

VNV =<7 :

vin

1 NvN _LO0d
—< 1 NVN

U.S. Patent

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 14 of 53 PagelD #: 124

€11

») .

el o

i 1 3 R

+011 C—

+€01
—c01 3

01 O—=1
001 O——

—
o.

46290-NOD

N

< > +617
Sle OTzr
V2|0 oty -2l
e[ot O+
2o ofg
¥ = —017

o T8
0z]0 of;
61[° ot > -€01
8T ofg
I ot7 > +207]
or° o > -101
ST T© old

o °Tz

+

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 15 of 53 PagelD #: 125

5,537,533

Sheet 12 of 40

Jul. 16, 1996

U.S. Patent

52z 1-SINI - ovzsIL = 71 ‘O
11EL €1 <O—5— 6L _ T 3T 0L <F=TI EA EV <IN 072l
L E za_| S hou ENDINI - 59 QAT 1 TEL ok ZA 2V <IN H2L]
2TeL 2L CI—Fo—] 2LNOMNI V1 9 -
3 IV DN |7 Q3T O IGrq LA LY 5 _ —
N0 kL gy LLNOANIT QI L 0A OV 5 Slzlzlals
1IN0 07ThL <H—gg—{ OLNOMNI INDINMT -5 30 p- 8<K38<8<H
_ i TG ONDINT - oy YSvN =P R R e _
1N0"M00T0 ™ kL <I—ag—{ LNOM1900Hd a3 [Wy 11
% INviDnan | O3dSIDINIT - o De kT4
MOVINIAS 1L C—ga— MOVINAAT O3dOINT g N
30 WIN 1l 575 03dS/ESIINIT | 5g
1BHMEL O—p 50| LaUM - oldid =
o WOHd8 175 h o] ;
[S1:00lvivatlL OFUINIAI 5q <JINIAT L m " m
sroolaayis B0 LYMNAN 5= CIZLIVMWIW L & 7
o 90v ! 3
— &N 6d ot 4
\ wvn e 0T3S0dSdDIH 55 R N N N T Y oIt
N N N H oy
— | Wﬂ 113S0dSdOIH g memmmumwummuwm.ﬂ%
AR B s v ¢13S0dSdBIH =g oML TmsTo17 6L @
1 BN NG+ NG+ ASH NGt AGH AGH _
) 30 WYHINTEYST 57w 0L LIVMWIWTLL
SN B T) <]
e i A =5 ZHWS €L a—5<g i
(e 5N + assn HOLVTIIOSO Iﬂ
O} [—2 +dv0 ZHNWS 2l 9°\J% 1NO QN9
SN 4 [sr00la NN <t=g ZHWS HL o—5<g
. 9l _ g8sn -
0ro 21 terooly 13538y~ LS ZHNS MVHL < < AT
9t NV g YNV v8SA LA
N 83N

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 16 of 53 PagelD #: 126

5,537,533

Sheet 13 of 40

Jul. 16, 1996

U.S. Patent

[SL00lv.LvaLL —

FIHM_WVHS Ll &

30 WYHS 1L &>

08HM_INYHS HL Co——
30 WYHS 1L o——

[S1:00laaviLl
T exvizewvys
I PV i
yrA L I Slaavil |
4 wlw mw« 9 piaaviL |
07|32 VI elaavil
bV [€Z7_elaaviL)
by e LaaviL
o [72_0LaavLL
a ovlse_eoqaviL]
SIVIVATL 6F 50 SY[E 80daviL]
VIVIVALL BLlo] oy |7 00QvLL]
EIVIVaIL 71|29 YIS 90aaviL]
ZVIVArL Or| k] EY[ocoaavil]
[VIVALL GT1o0 oY 7 ¥0aQvLl]
ovIvall ¢r ¢S ¢¥reeoaavil]
BOVIVATL 2T|;0 gv[6__codavil]
OVIVaIL 17 0r10daviL
Zin
8XOIZENYHS

IV >
pird ELL I SiaaviL)
4 wm mﬂ« 9z yraavrl |
07| VI elaavil
biv[€Z7_2lagvLL]
HY [1aavL
oy [Fz_otaavLL]
q rv|5_eaavil
TOVIVTL Brled ov[c _soadvil]
QVIVALL BT|o0 ov [y [00QViL]
SVIVAIL ZF|;q g[S 900QvLL]
POVIVAIL Or b0 EYocoqavil]
EVIVALL or S0 2¥I[/ 500QviL]
vIvall ¢r| %S SYleeoaaviL
OVIVALL 2[5 oY [6__codaviL]

OOvIVarL ol Toqavril __

(D)EI "DIA

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 17 of 53 PagelD #: 127

5,537,333

Sheet 14 of 40

Jul. 16, 1996

U.S. Patent

(QEI "DIA

—3 037 1L

AT OTLL
0ee [S1:00W.LVALL ———
SngoLdisy 0IMOVdd3al)
N AN [Y el L] plsSWL |
% 8 W m 210 40 5 zmvIvaiLl
)]
A AN 1 N i mm mm 8 [90vLIvalL |
X 9 SR wHYS pq [LISOVIVALL]
I N N LTI B S T D 29 [olpovivall
NN 2 4 i 1 Sl N [T
O e a9 6o [Feovivanl]
N e RS o0 [E0VAvaLL
= Sed i L 2 [00VLVaLL
Ida3T AT
34 Pr-
Goy [si:00lvivall

< HM @37 L

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 18 of 53 PagelD #: 128

5,537,533

Sheet 15 of 40

Jul. 16, 1996

U.S. Patent

01 HHOVIN

vl "OI4

f

4]

£¢

£000Y1Lo—2

30 WIW 1L O—y

LGHMEL o7
000QY L ED>—51
0aav} L o
2000V} L o—¢1

44

14

0OND
LAONO
¢aND
£AND
0l

H
¢HOM10
el

14
SHIMT0
FJOA
000A

Hh N
S04

EXSdMr

.NOEOF_

+EOI

(42

0g0/

4

6¢0/l

52

820/l
LcO/l

0€d¥L

920/
SeO/ |
L&Y
€20
t440]]
12O/l

L oumLL
%

T XLVMNIW 1L
T y0dadviL
o s0aavil
< g0aavil

020/I
610/
810/
LLO/|

e ——ghaayiL

57 ZLIYMWIW 1L

910/1
SLO/I

|ﬂN|I|U 30 WvdS IL
{24

y1LO/I
eLo/
¢lofl
HLO/
01O/l
600/1
800/l

e

|“°|"|°°|°’£L°1
||
[
o
O
L
[

L)
—]

~H|
—

L00/1
900/
S00/
y00/1
€00/i
c00/l
KO/

(=2

S > L GHM AVHS L
S 0gHM WVHS |1

| cOf

71

51— HM Q3T HL

ain

[S1:00laQvL

=
<
=
=
|
=

lE.AHTWI

0 WIN L

o o
X
o
O olx
A
(")C\JY—T

<t

—{C\
] —

064060600

(=

bDboo

000/

i

v

gin

S
YOI J

<11N0 Y0010 1L

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 19 of 53 PagelD #: 129

5,537,533

Sheet 16 of 40

Jul. 16, 1996

U.S. Patent

52z L-SII - .
0IEL€TeL | ELNOINIT ENDINT |5 | = ST °O1d
2L 2L T C1NOMNIN INBINIT Tlodlo (o (D
1N0” 2L gy LLNOXNIT 8v Ww & W £ w.w. Ww
1IN0 0TeL Ch—gg—{ OLNONNIT INDINIT - =55 2R ET TR =
) i BLLE ONDINI o -
LNO™I001072L gy LNONI000Hd oo | <1 €18L7076L
Sro—| LNVHONIN oV gl ell
o g5 OVINAA DdDINT eg SNl
30 WA ¢l <5139 03dS/EZIMNIT 5 _
lgdMeL AU.IIMH._IO LEHM OIHNIN gidia =
0g8dmel All.._o|—,u_o 0g8dM (1] Xe) x._._<>>§m§!N._.AU|m g
WOBdE == ol z
[51:00]vLvazL OFHINIAT [5g <ININT el W ” m
. LIVMWAW CIZLYMWIN 2L
[sh-00laavel p_v 69 el 2
N2 ! £
r 00V
D) 6d] g
8 mmVn {.% 013S0dSd/OLH 3] > - o o .WV S.V 9l TMS L
o [=2N I13S0dSdPIH g ABshBshBsABSABSAB
A s 21350dSd/OLH - Ttk Rl Rea R fa s R tal::
| tH 54 6] m m o O
A 5 NG+ NG+ NG+ AS+ AGH AGH _
) = WYHINNEYST |57y LIVMNIW 2L
SN N i ~dv2
BMY i €0
6] Moo Lot
5 1 e
s S
0L
ot SEER +dv0
oI - v ~
(omﬁ, > lsto0la N0 <g— ZHWS €L
15\ % 100 1353 |7~ LsH
91 sHOOY WY 5 VNV
on

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 20 of 53 PagelD #: 130

5,537,533

Sheet 17 of 40

Jul. 16, 1996

U.S. Patent

[s1-00lvLivaclL —

9I "OId

LGHM_WVYHS ¢l >

3T WvHS 2l OO

09HM VS 2L o———
30 WvHS 2l o—

[S1:00laavel

8XNZENYHS
I PV)
yr4 ELL I S1aavel
4 % M« 9¢ praavel
4 ERR M P (741
H¥[ez_z1aavel |
+¥ [fe_t1aavel
&V [yg_oraavel
g ¥lez_6odavel
SIVIVaEL OF|50 &Y[E__80aQvel]
pIVIVQeL BLloq ov[y__200Qvel]
EIVIVael ZF0 pv[e9oaavel
2IVLvdel 91| A0 hv[8_soadvel
Lvivael oH S0 SV[Zvoadvel
olvivael €H°T ¥[8 eoadvel
BOVIVOZL CH|pd ov[6__coaavel
80VLvael T 01 todavel

2

8XZENYHS
M vV y
yrg ELA I Sraavel
4 w.m m”« 97 viaavel
073 Iz eiaavel]
HY[ezgiaavel
LV g T1aavel |
8V vz_oradvel
q Y [Ge_eoaaveL
JovIVGEL BH 50 4Y[E__soddvel
S0VLVQZL B|a0 oy |v__L00dVel
Sovivazl [T];0 VS 900dvel
ovivazl 9r 'S hY[ecoaavel
E0VLYAZL STl o] S [L__yoaavel]
QVLvazL EHq Gv[8_€0advel]
lOVL¥azL 2Tl o0 o [6_c0advel
ovivazl FHLS 0T fodavel

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 21 of 53 PagelD #: 131

333

b

Sheet 18 of 40 5,537

Jul. 16, 1996

U.S. Patent

LI "OIA

— V(" i]
— aaI oL
088 —_—
SNgoLdISH 0IMOVdd3 -
~ N o T RO pisswL |
NN /0 .a -
I S AN I 5 B ! 6 [Z0VIVaZL
TR el 0 0 [B]o0vIvaeL
N N B B I 7 [SOV.LVaCL
~ 1o oo 0 ¥4 |9 [rovivael
~ N0 €0 reeovivael
I N SN I 11 I S A ww wm b [0V 1IVazL
NN RITRITE 8 g [SR0vAvVaZL
= 8ed 7 L R o d m_ I[N I —
2daa 1 50 pH
92N
08g
\ 4 994

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 22 of 53 PagelD #: 132

5,537,533

Sheet 19 of 40

Jul. 16, 1996

U.S. Patent

I "OIAH Y |XCAMT [s:00laaveL
0L LHOVI ' ° 4 O_IH
oo |7 2l viaavel |
62011 5 oc4v. [1L_etaavel
8201 |- g _ziaavel
[0/l [9——108HMeL llmomm 110QveL
920/l y0laQvel
5201 |55 gl I
VEO/ 48— XLVMINIW 2L ¢ 80aavel |
€20/l s y0aavel I Zodavel
¢cOll Io.nllAUmonEw._.
120/l [-ge——<19000veL
020N |24
o S o 2
Lol lee—>30 WS 2l Ao b
SL0/ 75 - 2l <0 V:QOA o i
mww_ 5> B IVHA LYMWIW &l < 3 ﬁ
- T 2
T 200 51 - aoin J
- 0aND 1O/ 3>y 3wV =0
-H LOND 010/ Ho1— alo
¢l zano 600! [r— W
¢ eaNg 800/ (21— oo
goaaveL >—5 0F 1000 1 — <o
30 WAN 2L o H H 900/l F&——C> HEUM WYHS 21 :
= TEHMEL o—g] 2HONTO S00/1 5—— 08HM WYHS 2L Lo
ooaaveL o— € 700/l 15— o
R €00/l {3— o 2o
2000vzL o—ge] SHIMTO 200/l [i——> M T el o
221 190A 100/] H— Elo
7t 000A 000/l 15 il
\ 4 SN L

5,537,533

[e0:00lV.LVQZL

Sheet 20 of 40

Sk

[z0'v0lv1vazL

- = lr—{r— <

N

[20:00lv1vacL

Jul. 16, 1996
[11:80]VLY 2L

il

e

[G1-2tlvivazL

U.S. Patent

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 23 of 53 PagelD #: 133

T T T T LI) A |
B8 Y ERRBRLEBEN B REBE RS s Icaromacbodudbdhihdblol =
{/\/\/\/\/\/\/\/\/ﬁ/\/\/\/\/\/\/\/\/\%/\/\/\/ /\/\/\/\%/\/\/\/\/\/\/\/\%/\ J
H ' ~
_ 4
P¥29LLOVh. ¥ HAM 3 =
EA OV pLEINLOVYL 8
Zh o 2
i 10 £
A Y 7
61 OA 0OV 06 10 m_..m O
3apk- | A e R | B
asen ‘ mm S0 4d mm
291 10Vh. 6170 Qg
EA V] = 71 mw mm %
ek oV & 010 e
A by 0 I
0A OV |5 el o
30 et goen =
J6eN HM INYHA
redLLOvrL pIS9LLOVYL _
EA £V
" A o mm AN
LAWY 52 34py
or ov - 0 10fg
30 ogrt - % g
IN3IAT 2L <— 0 sa
aean 610 val-
Y9291 LOVYL w €0 €d mw
IEAREME g mm el
Sen ov i 1 o
Sin i 7 Wi
Efon ov 3) voen
30 &b ay Iwve |
v6en

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 24 of 53 PagelD #: 134

5,537,533

Sheet 21 of 40

Jul. 16, 1996

U.S. Patent

- | T NP L= EA €V CINCOWL
LIk B18L g o ENDINT 176V IO 2x ov [aNrweL s
LNO"WYHL 6L 70— ZANOMNIT NI e L M -
1EL CH—e— 8v - I91A LYot =
€THL1TEL o HLNOMNIT arsziatdoa vl |zt tE i a
§TeL 076L C—cz— OLNOMNIT INDINIT - 5 APeT |[SBSSSESRSS
_ ~ —Tg 443 ONDINT 5y asvn R R
1N0400T0"EL g LNOY1000kd €161 HvL
—ie—{ WNveonan DRSOy I NI WyHL €L
MOVINIAI €L CI—g=—1)OVINIAT DFdDINT 17 S e
30 W3 €l <y 03dS/EINT |5g
1HMEL 57| LaHM —-— o -
Ot WOHg 6 8
70 [. ot Z
[51:00V LVaEL OIMININI [5g LCINAAT €L 1 S
N LIVMINZA CIZLIYMNIWNEL 5 =
[s1:00laaveL {1 69 5 Z
r 50v4
= O 6d ST 4
| e LR e
113 : . . : . .
o i 8 N82RESLBSNBRE N8
20 ¢ ZHS0dSAPIH 5 BIMITRITE L0 "6 _
™ + _
—r) L WYHINTEYSA |57 AsH NS A LIVMNIWEL
& = v
(.% P -dv0 o)
N
ANty R
N J '
NEN [)wm [€0
oY 34
orr) 43 Wy
69 <+ [s1:00la NINTO <f—g— ZHINS-2L
O o - 1353 |51 LsH
or | g YNV
N

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 25 of 53 PagelD #: 135

5,537,533

Sheet 22 of 40

Jul. 16, 1996

U.S. Patent

IC "OIA

[S100lvLivaeL —

IHM_WYHS €1 [

30 WyHS eL [

0gHM_WYYES el Co—
30 WYHS €L o——

i} [G1:00laaveL
T 8XeewvHs |
R P—
77| 3M I SIaavel
e wm M« 9 plaavel
0z &Yz eiadvel
H¥lez_z1aaveL
LV [tz TiaaveL |
=
STVIVaEL BF mm m« € 80qavel |
PIVIVAEL Bh < oy 2 mmmM«mHﬁ
b e
LIVIVaEL S mm m« i gnnﬁmw
Il M
IVAeL ctlgg oy <
aovIvaeL PO Ior 0daveL
T exvieenvys
MY
4 ELL I GIaavel
74 wD M« 92 pIaavel
4 ERI M P ()
+1¥I€z_craavel
LV [Te__LaaveL
M A
G 600AVEL
J0VIVaEL 6F mm m« w wwm m«m_.
%«..«mmuﬁ mw S0 SYre—goaaveL
vovivael or28 "Vi9—coaavel
covivael <S8 €7 —jodavel
LT R V] P (UL L7
covivael E11c0 SVl e0aavel
lovIvaeL 2F 03 oY [6_c0davel
oovIvaeL P ¥ Tor10daveL \—

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 26 of 53 PagelD #: 136

5,537,533

Sheet 23 of 40

Jul. 16, 1996

U.S. Patent

cc OId

SR VoY]
— IQITELL
0ee [S1:00lvV1vaEL ——
SNgoidisd 0IX0vddan)
N o RO psswL T
% — W__ : £0 L0 rF7ovIvaEL |
5%l 4! L
O R el R 39 [esovivael]
I T 13 N 13 S B WA [(o
X e arRre—onfe fn o [hovivasl]
NGNS 3 o 1 S W R R
O e e R e 60 [eovivasL]
N7 BRI en e 3 [E]I0vVvasL
= 5ed oz T 81| 13 [o Toovivadel
edaT1 L
34 Py
0ee gen
0.4

I UM a3t el

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 27 of 53 PagelD #: 137

5,537,533

Sheet 24 of 40

Jul. 16, 1996

U.S. Patent

[51-00]aaveL

€7 ‘O1d = N IXZdMP
0L LHOVW A% 0 .. OJ
L0)
& —um] 2L _pIaaveL
020/! HM NS
620/ Fr——3 QH_NS 0e4v. [LL_ztaavel |
820/ HY——3 3075 g ¢laavel
120/ [3e——1 0BUMEL - S 1laaveL
920/l 0% 1NOMOOTO 2L Srt_laavel
520l o ——1 AQHOI £ 600avEL
V20l & XLIVMNIW €L 2_G00QYEL
oo T Goaavel
1200 & goaavel
0zon 1S
%
610/ [HS——1 S1aaveL
80l Foe— NE;_\%,.@M&
LLO/l He——C> 50 WyHS €L
910/l (He——D> QH OH
5o/l (e
P10/l o
- o ot HM 0414 ,
i I
| oaNg 1o/ {5t 2o
H 1aND 01O/ .@.IN 4o
JEEE B B
£00aYEL 20011 _ i1
30 AW 61— L 900/| Fg——C> HHM_INYHS €L o
[GHEL O] 2HONT0 SO0/ |7 OB WS €1 510
000QVEL ¢ Y00/l -1 X
LoaaveL —ee 7 £00 F—— XaI8D 2o
2000vEL g SHITO 200/ - ——> UM GITEL_ 1o
2211901 100/ H——C> QM SALYIS GH =0
21 000n 000/t F5——> UM GH Lo
v v2n m

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 28 of 53 PagelD #: 138

U.S. Patent Jul. 16, 1996 Sheet 25 of 40 5,537,533
o =
o o
@ N
= ICD(/%OID: P~
é&ﬁﬁ
=
s
i M o
| @ © < E.
Bl X L X
k:s\aolcc ~ Q
':t'("JC\J'I—'T
o
O
o oo Zo o? -+
o °° |s PX2dNP ~N
8 = % 8r .
If.(l,)%)oln: ~ LD
S:&“‘,_’T ’E
10 coi
<« ° O |s
B x E
Sldoke [N
A N
1
o <

i QN

U55A
T2_CLOCKOUT
.l_ 74F32
U58F
T3 MEM CE D_l3_[>c1 2
74F04

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 29 of 53 PagelD #: 139

5,537,533

Sheet 26 of 40

Jul. 16, 1996

U.S. Patent

TAARS - .
o e SLNOMNIT ENDINT o] = $¢°OId
1NO™ WVHL YL <—o— 2LNOYNIT ZNDINIT slazlalzlx
€IEL 1L CI—g—{ HLNONNI 8v Wm LS W/_ W &
1IN0 0TrL <I—gg—| OLNOXNI INDINMT - =55 SRR R R
B _ g dul ONDINM |57
LNOH00107 L gy LNOMI000HA 1o (oo o o
ora | INVHONA ov <1 NIWYHL L
g5 | MOVINIAZ O3dSNNN eg DTt i
30 WaW vl 5130 03dS/EZHINIT |5
laHMPL D|®n_0 1gHM DIHNIN aldig =
08HMPL 73] 08HM) J¥e) XLNNABI 31 g =
Woude =5) ol Z
[SL:00lVLYaYL OIHINIAT gg < 1LIH 0guM . m w W
N LIVMNIN <JZLIYMWIW 71 2
[s1-o0laavL (P 60 b i3
N7 V8 g Sl B
o) 24 07350dSd/91H ol n
R A 6d - S G C U L T PMS
H R R H
o) 2R 113S0dSdOIH g Ammzmmw_mww_mmw_mww_m
2] ¢13S0dSd/OIH 5 TR meTmLTosToL 7w
8A 1 My AG+ AG+H AS+ ASH ASH AGH
Y =2 WYHLNITEYSa
= | _eH 01V
o N -
22N I dv0
—SH) =N 20
(O—.Y_ ™ N _-H_ .|®|O D W_a qu ”_ - .
TR REN ¥ Ty 1 0 o e NG 0TS b
60 4 [ekoola NDITO <tog— ZHNg 1L VMAER L 51" s bE
LA ol 1353 = LsH TH
4 [srooly Lo 8een
9l NV O|EAU YNV
8N

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 30 of 53 PagelD #: 140

5,537,533

Sheet 27 of 40

Jul. 16, 1996

U.S. Patent

9¢ DI

[S1o0lvLvayL —

FEIHM_IAVHS ¥1 O—
30 WvHS vl &>

08HM IWYHS 7L TO—
30 WYHS VL o——

. [g1:00laavyL
T 8xicenvys
e ’
yrA ELL I SIaavrl
e % M« 9 praavl
4 EX M P (i
HY [ez_claavel
LV Tz 11aavrL |
sy
a W 29
SWIVIL THaq ov |-—700aw
ervivart 238 Ve —goqavel
svivarr o Y4 Yo coaavel |
Lvivayl ST mm m« I WSD:.H
e el
Lvavl ctlog oy L
sovivarL P20 O lorjoaavi
T 8xizenvds
E
yirq ELLL I STaavrl
4 wm M« 9z yIaqvrL |
24 SR M Y07
LV Iez_z1aaved]
L [tz TraaveL]
=
4Q LV 800avvL
%ﬁ«m ﬂﬁ m” 9%Q w BmQﬁL
Svivar 209 SV goaaveL
sovivart o P9 Vo coaavel|
covivarr or€d &Y —oqavel |
sovivarl ©red °¥[g coaavrl
ovivarl 2rtd VIgZoaavel]
L &iog ov
o0vIvavl T2V I0r 10001 __

5,537,533

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 31 of 53 PagelD #: 141

Sheet 28 of 40

Jul. 16, 1996

U.S. Patent

— I@ITNL
IQ3TWYHL L
0ge [51:00]V LY QYL ———
sSNdoLdiSH OIMOVYdaaT)
~ N T RO pisswL |
& 5 N” W_ m a11<0 44 g Zovivavl |
T T
NN R e R 29 [eeovivar]
N N I e 2! 50 0 [L]SovivarL
NN 1 B 13 R N T T2
~N RNy o) [SE0vLvarl |
I N N L1 B e A 0 O [feovivanl
I Y e ! D 49 [E]rovivasL
J— | Pt | — —
8ed omzoﬂ_ BT o< .v 0OVIVAYL | — puiqav
A P
86N
0gs
f 2/d [S1:00lvLVayL

Jul. 16, 1996 Sheet 29 of 40 5,537,533

U.S. Patent

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 32 of 53 PagelD #: 142

§C "OIA T A XCAMT [s1:00laavyL o ot
OLLHOVYIN 124 T ! I o1
O
F - oF 5
%w““ 7 [l viaavel | 31 aH m Y ?m
620/ |-L 0cdvL [LL_claavel | o o1
820/l |7 g 2IqQvrL | Q3T XL Do o} i
[0/ FE< OgHMPL domm 11aQvrL Y EIC
92011 F5-<3 1n0 %0010 %L v 0LaaveL
520/l bml L8N e eoaavL
P20/ L& X LIYMNIN 7L 2 80aavrl]
€20/} [H2~17000Y+L I Zoaavbl =
i
020/ -5 = 22e0vL atjor | ot
61O/ |29 510avhL S0 i 904
810/1 %UN:EEENP m&% N
m@“ g7 30 WS Lexy Vals > 1IH-oguM
SO = or X0 ag[el
PLON 57— %S S
= Sron [B— AP NTRT K
T ¢toN g1— 3 sarer
T 0dND 1O/ 7T -Nl—lO z ¢Ad 71
HiaNy 0101 g —— o] 1Ay oo>ﬂ
i SN m%» 1 HaMY 001 o
£00QYyL CO—F —
mosm_zlﬁi I 900/ .mlU LM WYHS b1 ..W. o _I P
TGHAPL —ir ZHONT0 SO0/ (T 08HM WS 7L Lo | —
ooadvil =]) K g 52Y A2V IVaRL]
10gavyL o 1! £00/ K o 710 : LA b 5<. <ov..
Noon_<E_U|||mm CL/IMTD 200/l IIU_V HM @31 vl B oY OA 8<..<om.r
1100 10O H— 10)5 e TvarL
4 R _ vyin [51:00lvLY QYL
v 9N 6LF L —>3aAI
300930 GNY HOLOANNOD 0T /AHYOFAIN

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 33 of 53 PagelD #: 143

e |
(op) .
vy 6 DIH - -
~
3 o)
“ g S 3
; = R = =
= vyl = WvHL
YNV HME M.%_A ; NYN_1008 <TH— HM_% M,%A - I ZHNS WYKL
15 = d - 1008 < "
il / ol [
Oyng vs1 Oluug vsT
S SHO0ET NET 3 SHOET NiET (3 .
N Stozr NIz Soa NIz CIUM AT HL
S Llorm N I8 ol N 8
R Y1001 Nio7 K2 | NIWYHL VL <001 Nio1 1 LN0 WYHL 7L
% 2 ang oon [E 2l ang oo [EE
7]
2 ar v T v
© -)
=
[
]
e = mvel = = = vl = =
YNY o] TINY Y105 I ZHINS WYHL YNY o] TNV 104 I ZHNS WVHL
1S > 1S4 851 8- ISH 1S4 as7 8-
Dliyya vsq |4 Oiyya vs |4
- LhoeT et B LoeT nie1 2
= m|”om._ NIZT m: .m..”.oﬁ NIZ1 WF
& —Hotr N o —HouT NILT S o
= 007 NIO1 NITWYHLEL <3 007 NIO1 I 1IN0 WVHLTEL
o w aND D0A- MF .w aNo JOA MF
s eir v cif v
-]

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 34 of 53 PagelD #: 144

5,537,533

Sheet 31 of 40

Jul. 16, 1996

U.S. Patent

<ye-02r £€-02r> -
_ {<ee0gr ke-02r >-<IHM OdId
MOVINIAT €L 08-02r 602" >~ ad Odld __
INGAT €L 8202 22-0ef > H~<IMOVINIAT LL
—— " 3T XU 92-0gr §2-02 > INIAT bL ——
LSHO—<pi-0er 80> ATIT XL
<2202 le-0er>
) Tooh? Z0vIvarL)
Joviyael | < 0¢ e 61-0ch 0ovivall
<gl-0gr L1-02r >
- 20VLVOEL | <ol-0zr SL-0er> /
GOVIVaEL | & 2 S0vIvarL)
T <yl-0gr E1-02r>
POV LvaeL 2 pOVIVALL)
< gl-0g0 Fi-0er
<o0l-02r 6-02r> g0V valL)
EOVIVAEL | ¢ o- ke 20vV.ivalL
<g-0gr L-02r>—
LOVIVAEL | (p0zr 6020 > (ourudtT
00VIVAEL [<o ooh Vlosrs] 0OViVAEL
[S1:00lV.LVaEL v [gH00lV.LVaLL

HOLOIANNOD 3OV4HILNI NSO

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 35 of 53 PagelD #: 145

5,537,533

Sheet 32 of 40

Jul. 16, 1996

U.S. Patent

e2ivL
s Y
v 137007
T |° om SL vy i
Pl /1 el
VN \ A% T v18SWL
N
—T % %m__ 5 [SIVIVarL
e oq | BlHVIVARL
WS o [LISVIval
THé eq [[CVIVALL
% sq [S[HVIVARL
—m g [ovival
o0 og |El60vIvabl]
) 1D <C [BOVIVOYL
30 by
evn
visSWL |
o o~ oL 4
e O N FErevIver]
o ° 915 Pop pq |LIS0VIVAYL]
g ° 7 o 9 [p0v1varL |
o O 0 €
9 o oS 028 o |SEOvIVArL
¥ £ %y g [[covivarL
4 MAdhean + B0 oq |EMOvivarl
gL) 102 [00VLVarL
3 pp
Zvn
[S1:00lvLvapl

—1 HMaH Q01

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 36 of 53 PagelD #: 146

5,537,533

Sheet 33 of 40

Jul. 16, 1996

U.S. Patent

(9)

—< 021N
— 61N
— 8HLN
—LHN
— 91N
—GL1N
— vHLN
— ECHLN

d¢ - IWNING3L

|

bed

.IAN—. .
ST C€ OIA
—OLLIN
— 61N
— 81N
—< LIN
— 91N
—SIN
— VLN
— €N
— 21N
— LIW
(n)
permr Tl LIl el el
0900 T 6500 T85a0 T£500 T 9900 T6500 T #500 €509 Tesad 1609
9L/0r T9I0T T9ior [gijor 19%07 L9V/0r L9v/or [arov Tator [otor Tarior Torov I
000 T6200 T8200T 9200 Téeaa Treod Tee0a Teend T kedd T020a T610d T810a
9uoL T OIOFTOLOV L 9vor LOHOF TOFoF Tavor Torr Tovir
Gi00T e0aTernd] 01007 6007 800 T £00T 990 T 890
M IRCT L e ML ML ML WL
0500 T 490 9900 40 T¥vQD Tera0 Tev@d T HAD
permr LAl el L L L el el el e el e el el e me] mel T
0va0 T6ea0 T8ean T 460 Toead Teead Tread Teead Teead Tead T0ead Te2do Teead T £ead T9ad T42a0 T#2a0 T€2d9 1209
M T T T L il L ML Ml ML AL L L L m A m]
0200 T6100 Tera0 T2400 T9Ha0 TSHAO Trha0 Tola0 Tetad THa9 T0LADT 60T 80T £GOT 90T GOO T #A0 T €00 [A0 T 10D

Jul. 16, 1996 Sheet 34 of 40 5,537,533

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 37 of 53 PagelD #: 147
U.S. Patent

dOv¥/3adi/NOD YOOHY. m:m: .mU N nN
= 13534 7 - go<Jg < isd
X4650 [ge——<1 QH X480 oINn
={ LOND X4180 e~ QH X4}SD
51 2AND OHINI {75 —>DUINI
25| EOND AGHOI 42 > AQHO!
yaND SLd -
2 gl __sr3ar |
GAND ¥1Q
Gz oI _yit3al | R
9OND €10 -
0] pl_e3ar | =P
N9 ¢id =S>8
0v ANHE N
—=ZINIdATM L1d
02 oL __tiaal
—41 1UYN3a 0La
Ie g otal |
—21ONASdS 60 g5
910801 5] 91S201 8d .w.llwdm_o_|\
—22NovYINa Za = 4
—8cloyiag o9a|B—2L0d [S1:00lV.LVAEL —
_ e G 903C :
Q4_OH ez HOI8 - eQfer—zp3q] [0 Ot Z1 |5V EA T 7ovIVaeL
UM aH C—=24 MOIa 1a . o 2V ZA 50V IveeT
telisva o St_toadr | Z I Gl V1V
6¢ Ik 0030 __ i el m« m» 7 GOvVLvVAEL
[s1:001301 it 6 POVIVAEL
INEY
= m Z geen
yyedv.
eV €A —
< o w05 4
@S ﬂm%__ﬁm v | LV IAoT LOVIVOEL
_ _ 0 a
Q4 SNLYLS QH w aq 8t 00vl
veen

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 38 of 53 PagelD #: 148

en
en
)
>
en
yt
T

Sheet 35 of 40

Jul. 16, 1996

U.S. Patent

{si:001301 {s1:00lvLvaecl
eledvL

EY

| 3Py

WE % mm_ 81 GIVIVARL
1300t o) od[ZF_VIVIVaEL
eEar_Gr];0 pa[PE EvIvael
caq e fo FS[Er elvivdel
130 6|0 Sa[@ 1IvIvasl
—oiaa 9|9 SO olvivaer
6030500 Q[_6ovivdel
8030 ¢ § BOVIVOEL

ean

6L84v.

Ellwy, <1 yLva 3T ELe
| \ aapt <1 vY1va 3aeLs
—753ar 61 mw mm_ 8T Z0VIVaEL
30 or| 30 oq[£L_90vIvasL

S030_ST|,0 pql 7E_COVLVQEL
o3ar et hD Earer jovivael
eoaar 6|50 £3r8eovivael

o391 Y9 avivael
10301 G| ol __LOvLVGEL

003al 2 € 00VLVGEL

T Y,

Y

~
ShzdvL
did |
Ea]e,

. o8 Byo :
CIEQT 1, syl 6 GIVIVAEL |
V_.mn Nv om ©< w v-<..|<@ml A
130 € oq gy L EHWIVAEL

¢130 v g po[9 CHVIVAEL
LA Sl g gyl S HVIVEEL

[oigar_or) o5 o[7 OVIVAEL |

(—603a1 L] |5 'w[€__60vIvaEL]
g03al 8t 2 80VLvdel

2an

ShedvL
did I -3 omun__._
Eli] e —1 307642

_____leg gv|o .

20301115 ,y[6 LOVIVGE]

00301 et|gq gy[8 90VIVAEL
SOIAT_EV| g gy| L SOVIVAEL
F20E (0] B2 o=V T [T
B030 Gl ge g[S EOVIVAEL
03a_ Ot - oyl ¥ COVIVASL

(103021 |g [€ TOVIVQEL
003al 8t 2 00vLvdec]

1]

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 39 of 53 PagelD #: 149

5,537,533

Sheet 36 of 40

Jul. 16, 1996

U.S. Patent

(9)

el84v.
N—3aaav 31 €8
30— aav aa eLe
|0 g
o0 Wi
— 2o sarE—
- ol Pl
QHg0aQqy O——3H 0 va|g £00Qvel
H 2000y O—%{€0 €Q|5——<200vel
QH_loaQy F—{20 2d——110davel
QH X4£S) T—%{ 10 Lap————CIXESD
QH X180 F——3{00 00|g——<IXdISD
65N
(v)
0LAZZTYd
T
oS
—w|d o
—=18d 8l =—
A | N
A o | -
I kS L
aav _4a_e6 <dF—————] o Sl—g—
aay 3ree O———HiH i <JOHINI _
VIVa 30 el ——HE S <130 WIWEeL
VWVa T Ee O—5Hd drg < TEUMEL
QNS O——=Hld HiS <10gHMEL
UM WS T————5{0d YOI <3 LNOYO0TY el
09N

§€ "OIAd

5,537,533

Sheet 37 of 40

Jul. 16, 1996

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 40 of 53 PagelD #: 150
U.S. Patent

¥80.7 .
n_n_>OF|| [2:0la Qm wNE
3d
ER) o%ll ELEDHYL =
S| o T | 2l e

v 3ap

Y jﬂﬂ ="l y 37V N3Sd

W] (oov el Y g \ .

oy s [Dov o X g oa___ze|9dv

&Y A T A | T o N A

ov o—em| [v e Mdrereg | [0 e Qv 8
o NERD SR Wy N PV

£ OV v o|® Wi so | [el 5

N WO owv] Yo aHE—gg] ea s O

O W] | L0V ¢ COMS ¥

€ VT av e & §ed < Lvhl

AN T e 6V ¥ed < YNV

0 VI Ty] O 8D

© Wiorov v LY ZEd [M

s {2V Lid[g— ISH2I0D
—] SV 9ld[z—8IY
e S pldp—o oY =
[51:00lv m_n%AHT e11ad anND rgr)
8ELOHYL >m.:|m% Mw_w m_%n_ N.Emm mw ’ “
—h 1957 | O00OHYL 00OHYL SiVd QX e— e T3 ey
—5{9A @29 501 aXLi— IX T
“orEA ¥R O0A IS — |
T ZA d
§023 <519 €A gt y N_me
ooﬁmm_ - m> m e 000HY.
T TA
1] A 2
502100 LHor v : .@ <1 353
080N

N

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 41 of 53 PagelD #: 151

5,537,533

Sheet 38 of 40

Jul. 16, 1996

U.S. Patent

~ 0edId - PIEOHY. =
m 01 mm 81 [Za)
EAAAZ S 6 o g ILEN A
IAAAZ NS) 6llop g [ZE] S A -
NAAZ T]! €L [+a A 0209.2 T
AN TN S I G)
> T PO AR ¢ Wd Org
S AAAZ I v 6 v | 1d \ ddA [T
SNAA 1S 5 510 00 £ od) 30 Prz <153
AN Y Z g1 }0 MO <8901 PV pPgg—
00 34 pP— v JLLY
A I ¢ I 0%
a an 91y I3 <391V
aly BN 4
AR AN
eV TV]
oW v
— MH |m||.|n_ oov LY Imm'ﬂd\
18H H———CJ 18H21dO 0L o1V]
5| 0OND-QTH INILNALNO F=— 6V 57— 607
51| NO-GTH NN [2— 8Y 7z gov
$02100 [>—=1 SO 10 |2 17T Lo Y 07
ZHING o—=1 NIMTD 5a 4 —e—511 0 SY v
LML &1 OdINT va | I T e
T %0 20v o—¢] 1SH eq |4 A B7Ho ie—av]
oY CO— asH ed a1 70 2N =0 Gr I49) oV [OT 20V
LNOMNIT T LNOMNT 10 |41 a1 ig] 0 WY 1oy
v NDINIT E5——1 NIINT 00 53 sa— —oq—tr] 00 oY T—00v"
en
-

Jul. 16, 1996 Sheet 39 of 40 5,537,533

U.S. Patent

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 42 of 53 PagelD #: 152

Wvdl

1017 NILFT

(Q4vOoauIHLOW NO £})

|

TYNY Y104
1Sd €S1
TERREY
057 NIET
021 NIZ1

007 NIOT

aNoD O0A

o™ colmlc\llco|co|r\|oo|
b e .~—

ar

Wvdl

YNyl <

1SH1 <

LNOMNIN <3

WNY W104
1S4 851
HHI VST
0g7 NIET
01 N2l
01T Nit1
007 NIOT
aND D9A

.@IUNIEm

I

AOM CJ—

8€ "OIA

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 43 of 53 PagelD #: 153

U.S. Patent Jul. 16, 1996 Sheet 40 of 40 - 5,537,533
l—.
LLI

[€2]
Wish

-

L

uto

MAX705CSA
(b)

a
LY = | x2dNr y
O O ||'
AN ANy
Mel WY
AN
T ory

1

WDV

FIG. 39

CD10
uf

Jduf

Juf

T .1

CD6 L Co7 1006 Lcog L

Juf

(a)

[1uf

Juf

10/16

10/16

1cpt Lcp2 Lcb3 LCD4 1 CO5
uf

Touf

1pf
il_ DC1 il_ DC2

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 44 of 53 PagelD #: 154

5,537,533

1

SYSTEM AND METHOD FOR REMOTE
MIRRORING OF DIGITAL DATA FROM A
PRIMARY NETWORK SERVER TO A
REMOTE NETWORK SERVER

FIELD OF THE INVENTION

The present invention relates to the protection of mission-
critical data in a client-server computer network as part of a
business recovery plan, and more particularly to a system
and method for remotely mirroring data such that a substan-
tially concurrent copy of the critical data stored on a primary
network server is also continuously available on a replace-
ment network server which is located at a safe distance from
the primary network server.

TECHNICAL BACKGROUND OF THE
INVENTION

Banks, insurance companies, brokerage firms, financial
service providers, and a variety of other businesses rely on
client-server computer networks to store, manipulate, and
display information that is constantly subject to change. A
significant amount of the information stored as digital data
in computer networks is mission-critical. For instance, the
success or failure of an important transaction may turn on
the availability of information which is both accurate and
current. In certain cases the credibility of the service pro-
vider, or its very existence, depends on the reliability of the
information displayed by the network.

Accordingly, many financial firms world-wide recognize
the commercial value of their data and are seeking reliable,
cost-effective ways to protect the information stored on their
client-server computer networks. In the United States, fed-
eral banking regulations also require that banks take steps to
protect critical data.

Mission-critical digital data may be threatened by natural
disasters, by acts of terrorism, or by more mundane events
such as computer hardware failures. Although these threats
differ in many respects, they are all limited in their geo-
graphic extent. Thus, many approaches to protecting data
involve creating a copy of the data and placing that copy at
a safe geographic distance from the original source of the
data. As explained below, geographic separation is an impor-
tant part of data protection, but does not alone suffice for
many network users.

The distance which is deemed safe depends on the
expected threats to the data. Storing a copy of the data in the
same room with the original data typically provides some
protection against hardware failures; storing data in another
room in the same building or in a building across the street
may provide the copy of the data with sufficient protection
against destruction by a fire that destroys the storage
medium holding the original data. Acts of terrorism, earth-
quakes, and floods require greater separation. In some cases,
separations of 30 miles or more are required.

In the mainframe computer environment a process known
as “remote journaling” or “electronic vaulting” is used to
protect data. A mainframe at the original data site is con-
nected by a communications link to a remote mainframe
which is located at a safe distance from the original site.
Data written to the original mainframe’s disks is also sent at
essentially the same time to the communications link, and
hence to the remote mainframe, where it is stored until
needed. Mainframe electronic vaulting thus suggests that, in
addition to geographically separating a copy of critical data,
data protection for client-server networks should also

10

15

20

25

30

35

40

45

50

55

60

65

2

include some way of updating the geographically separate
copy of the data.

Although electronic vaulting provides an abstract model
for the protection of client-server computer network data,
the extreme differences between mainframe environments
and client-server network environments prevent any sub-
stantial use of electronic vaulting hardware or software in
such networks. At the hardware level, mainframe connec-
tors, bus protocols, and signals are all typically incompatible
with those of client-server computer networks. Hardware
which connects a mainframe to a communications link will
typically not even plug into a networked workstation or
personal computer, much less function properly to permit
communication.

At the software level, electronic vaulting code may be
embedded within the mainframe’s operating system, making
it difficult or impossible to port the vaulting code to a
client-server network environment. Even when the elec-
tronic vaulting software is not embedded within the main-
frame’s operating system, the interface between the propri-
etary mainframe operating system and the electronic
vaulting software generally involves disk accesses, context
switching, and other critical low-level operations. Such
low-level software is generally very difficult to port to a
network, which uses a very different operating system.

In addition, mainframes, unlike networks, do not typically
face the prospect of coordinating the activities of numerous
users, each of whom is controlling a separate machine
having its own local operating system and central processing
unit. Thus, mainframe software typically assumes “sole
ownership” of files and other system resources. Such
assumptions, which may permeate the electronic vaulting
code, do not hold in a network.

A different approach to copying data, which is used both
with mainframes and with networks, is off-site tape storage.
Critical data is copied onto magnetic tapes at the end of each
business day. These backup tapes are then taken by truck or
plane to a storage site some distance from the original data.
Thus, if a disaster of sufficiently limited geographic scope
destroys data at the original site, the tapes kept at the storage
site may be used to recover important information.

Although off-site tape storage is relatively simple and
inexpensive, it has severe limitations. Most importantly, the
data on the tapes is only as current as the most recent
backup. Thus, assume a business’s backup finished at 1:00
AM, the business opened at 8:00 AM, and a disaster
occurred at 3:00 PM. Then the business activity in the seven
hours from 8:00 AM to 3:00 PM is lost, because it was not
stored on the tape. It may be difficult or impossible to
accurately reconstruct every transaction that occurred during
the lost period. Persuading everyone involved that the recon-
struction is accurate may also present problems. In short,
merely creating a geographically separate copy of data does
not provide adequate protection. The remote copy must also
be substantially current.

A continuing disadvantage of off-site tape storage is the
time required to create the tape backup. To ensure the
integrity of data being stored on the tape, only the backup
software typically has access to the network during the
backup procedure. If a business closes at the end of each day
and leaves its computer network essentially unused at night,
the opportunity costs of restricting access during the backup
procedure are negligible. However, an increasing number of
computer networks are used by businesses that operate
world-wide, and hence these networks are needed 24 hours
a day, 7 days a week. Shutting down such networks for

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 45 of 53 PagelD #: 155

5,537,533

3

several hours each day to make a tape backup may have a
significant adverse effect on the business.

In addition, hours or days may be needed to restore data
from the backup tapes onto hard drives or other immediately
useable media. The computer network’s performance may
be reduced while data is being restored. Indeed, in some
instances it is necessary to deny all other users access to the
network while data is being restored, in order to ensure the
integrity of the data after the restoration.

Another approach to copying data stored on computer
networks is known as “data shadowing.” A data shadowing
program cycles through all the files in a computer network,
or through a selected set of critical files, and checks the
timestamp of each file. If data has been written to the file
since the last time the shadowing program checked the file’s
status, then a copy of the file is sent over a communications
link to another program which is running on a remote
computer. The remote program receives the data and stores
it at the remote site'on tapes or other media. As with off-site
tape storage, hours or days may be required to restore
shadowed data to a useable form at the original site.

Shadowed data is typically more current than data
restored from an off-site tape backup, because at least some
information is stored during business hours. However, the
shadowed data may nonetheless be outdated and incorrect.
For instance, it is not unusual to make a data shadowing
program responsible for shadowing changes in any of sev-
eral thousand files. Nor is it unusual for file activity to occur
in bursts, with heavy activity in one or two files for a short
time, followed by a burst of activity in another few files, and
so on. Thus, a data shadowing program may spend much of
its time checking the status of numerous inactive files while
a few other files undergo rapid changes. Mission-critical
data may be lost because the shadowing program is driven
by the list of files and their timestamps rather than directly
by file activity.

Many conventional attempts to protect data also share
another problem, namely, that open files are not copied. The
contents of files which have been “opened” for access by
users may change during tape backup, data shadowing, or
other procedures that create a copy of the file contents. These
changes may lead to internal inconsistencies and lost data
because a copy program (e.g., a tape backup or data shad-
owing program) sees one part of the file before the change
and another part of the file after the change.

For instance, suppose that an open file has a length of
10,000 bytes and this length is recorded in the first block of
the file. Critical data will be lost if events occur as follows:
(1) the copy program notes that the file is 10,000 bytes long;
(2) an additional 5,000 bytes of critical new data is added to
the end of the open file by the user; and (3) at some later
time, the original copy of the file-including the 5,000 new
bytes—is destroyed.

The copy program will only have copied the first 10,000
bytes of the file. The additional 5,000 bytes will be lost even
if the program had plenty of time to copy that data as well,
because the copy program doesn’t “know” that the addi-
tional data is there until it works its way back to the file in
question. Depending on the copy program, the number of
files involved, and other factors, minutes or even hours may
pass before the program returns to the file in question and
notes that additional data needs to be copied.

Accordingly, client-server computer network operating
systems typically restrict access to open files, and conven-
tional data copying methods generally do not create copies
of open files even when permitted to do so by the network

10

15

20

25

30

35

45

50

55

60

65

4

operating system. However, the failure to copy open files
also has severe drawbacks. Files may be left open longer
than necessary, so that their mission-critical contents are
actually stable enough to copy but are nevertheless not
copied simply because the file is open. Thus, data may be
lost even though it could have been copied to a safe location,
merely because a file was left open longer than necessary.

In addition, failure to copy even a single open file in a
relational database may lead to the loss of data in many files
because such databases depend on files that are interrelated
and sequential. For instance, suppose a database must search
in sequential order through files A, B, C, and D to obtain the
required information. Suppose file C was open during the
backup and therefore was not copied. The data restored after
a disaster may therefore include copies of files A, B, and D
which are more current than the most recent available copy
of file C. Such inconsistencies may corrupt the database and
render useless the information in all four files.

Perhaps the most common solution to the open file
problem is to perform backup procedures at the end of the
work day. All users except the backup software are logged
off the system, and all files are closed. Thus, a current,
complete, and consistent copy of the critical data is obtained.
However, this approach to dealing with open files has many
of the drawbacks of off-site tape storage. Many networks,
such as those used by hotel and airline reservation systems,
credit authorization services, and global trading position
databases, are in use non-stop. Moreover, critical data added
after the backup software finishes is not protected until the
next backup or shadowing file copy, which may be minutes
or hours later.

Thus, it would be an advancement in the art to provide a
system and method for effectively protecting mission-criti-
cal data in a client-server computer network.

It would also be an advancement to provide such a system
and method which maintain a substantially current copy of
critical network data.

It would be a further advancement to provide such a
system and method which maintain a substantially current
copy of data as that data is committed for storage in open
files on disk.

It would also be an advancement to provide such a system
and method which do not require limiting or denying access
by other users while a copy of the critical data is created.

In addition, it would be an advancement in the art to
provide such a system and method which permit storage of
the data copy at distances up to 30 miles or more from the
original data.

It would also be an advancement to provide such a system
and method which make the copied data useable immedi-
ately after a disaster.

Such a system and method are disclosed and claimed
herein.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a system for remote
mirroring of digital data from a primary network server to a
remote replacement network server. As used herein, “mir-
roring” means creating a copy of data as the data travels
toward a storage location on nonvolatile media. Mirroring
may include copying data whose immediate destination is a
dedicated RAM cache if the data’s ultimate destination is a
nonvolatile medium. Data shadowing or tape backup cre-
ation do not involve mirroring, because they typically

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 46 of 53 PagelD #: 156

5,537,533

5

involve reading data from nonvolatile storage, and also
involve copying the data many seconds, minutes, or even
hours after the data originally reached the nonvolatile stor-
age.

“Remote mirroring” means transmitting mirrored data to
aremole location for storage. Conventional network servers
have the ability to locally mirror data by copying data to a
disk which is physically located within a few feet of the
network server. But known systems lack the remote mirror-
ing capability of the present invention. Moreover, unlike
data shadowing or tape backup approaches, remote mirror-
ing captures data early in the data’s existence. Remote
mirroring thus significantly reduces the risk that the data will
be destroyed before a copy of the data is sent to a safe remote
storage location.

The primary network server and the remote replacement
network server which are used in conjunction with the
presenl invention each have their own nonvolatile server
store. “Nonvolatile” stores include data storage media such
as magnetic or optical disk drives which preserve data in the
absence of any external source of power. By contrast,
random access memory (“RAM”) is typically a volatile
medium because it does not preserve data when power to the
server is lost.

A presently preferred embodiment of the invention
includes a primary data transfer unit (“primary DTU”) and
a remote data transfer unit (“remote DTU”) which are
connectable with one another by a conventional communi-
cation link. In operation, the primary DTU sends mirrored
data from the primary network server over the link to the
remote DTU, which is located at a safe distance from the
primary DTU. The remote DTU receives the mirrored data
and sends it in turn to the replacement server. The replace-
ment server then stores the remotely mirrored data in a
conventional manner.

The replacement server is not active as a network server
while the primary server is functioning normally, but stands
ready to be brought on-line rapidly as a replacement if the
primary server fails. At most one instance of the network
operating system runs at any time, even though the primary
server and the remote server each have a copy of the
operating system. The phrases “remote server,” ‘“remote
network server,” “remote replacement server,” “replacement
server,” and “remote network replacement server” are syn-
onymous herein.

Thus, the invention is useful in creating a copy of data at
a safe distance from the original data substantially concur-
rently with the storage of the original data. Moreover, the
copied data is useable almost immediately after a disaster,
because it has been copied to a “warm” remote network
server which can be up and running as the new primary
server within minutes of the disaster.

The primary DTU includes a primary server interface and
a primary link interface. The primary server interface is
digitally connectable to the primary network server, and has
sufficient bandwidth and signal compatibility to receive
mirrored data from the primary network server as that data
is created. The mirrored data tends to arrive in high band-
width bursts, as it is a substantially concurrent copy of
original data which is destined for storage in the nonvolatile
server store of the primary network server.

The primary link interface is digitally connected to the
primary server interface, and is capable of receiving the
mirrored data from the primary server interface and sending
it across a conventional communication link to the remote
DTU. A checksum is preferably computed on the data and

10

15

20

25

30

35

45

55

60

65

6

transmitted with the data so the remote DTU can detect
transmission errors. The data may also be compressed and/or
encrypted by the primary DTU before it is placed on the link.
Communication links to which the link interface is tailored
include T1, E1, analog telephone line, and other conven-
tional links.

The remote DTU similarly includes a remote link inter-
face and a remote server interface. In fact, the primary DTU
and the remote DTU preferably include identical hardware
and software. The remote link interface is connectable to the
communication link for receiving the mirrored data sent
across the link by the primary DTU. The remote DTU has
decompression and decryption capabilities corresponding to
the compression and encryption capabilities of the primary
DTU.

The remote server interface is digitally connected to the
remote link and is capable of receiving the mirrored data
from the remote link. The remote server interface is digitally
connectable to the remote network server and has sufficient
bandwidth and signal compatibility to send the mirrored data
to the remote network server. Each DTU is equipped with a
link interface diagnostic unit which provides selected status
and diagnostic information in a human-readable format.

The DTUs and other system components are configured
such that the mirrored data is normally sent to the remote
network server by the remote server interface within a
measurable delay time, such as 1 or 10 seconds, from the
time the mirrored data is received by the primary server
interface. The system is preferably configured such that the
mirrored data is also stored in the nonvolatile server store of
the remote network server within a short time, e.g., 10
seconds, from the time the corresponding original data is
stored in the nonvolatile server store of the primary network
SErver.

The primary network server typically provides mirrored
data to the primary DTU in bursts whose bandwidih is
greater than the bandwidth of the link between the DTUs. In
addition, it may be necessary to use the remote server for
tasks other than receiving and storing mirrored data. Thus,
one or both of the DTUs preferably includes a data buffer,
and most preferably includes a data buffer which is non-
volatile to reduce the risk of data loss. The presently
preferred data buffer includes magnetic hard disks disposed
within each DTU.

Each of the DTUs includes at least one microprocessor
and a block of RAM which is accessible by the micropro-
cessor. It is presently preferred that each DTU include four
digitally interconnected parallel processors. Each paraliel
processor includes a microprocessor, a block of RAM acces-
sible by the processor, and up to four interprocessor serial
communication lines which support communication
between parallel processors. In operation, the parallel pro-
cessors work substantially concurrently to process different
selected portions of the mirrored data. For instance, two
paralle] processors read data from the primary server inter-
face substantially in parallel.

The present invention also provides a method for remote
mirroring of digital data. The method begins by using the
local disk mirroring utility of a conventional client-server
network operating system to copy the data from a primary
network server to a primary DTU which is digitally con-
nected to the primary network server. Then the data is copied
from the primary DTU to an input end of a communication
link, possibly after being compressed and/or encrypted. The
output end of the communication link is physically separated
from its input end by a distance of at least 100 feet. The data

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 47 of 53 PagelD #: 157

5,537,533

7

is copied from the output end of the communication link to
aremote DTU, any required decompression or decryption is
performed by the remote DTU, and the data is sent by the
remote DTU to a nonvolatile server store on a remote
network server.

The data typically moves between a server and a DTU in
chronologically spaced-apart, rapid, high bandwidth bursts.
The communication link between the DTUs generally has
lower bandwidth, but also permits transmissions that last
longer than such bursts. Thus, the data is preferably copied
to a nonvolatile data buffer in the primary DTU in order to
allow the use of a conventional communication link having
lower bandwidth than the bandwidth of the channel between
the server and the server interface.

The copying steps which move the data between the
servers and the DTUs are preferably implemented by sub-
stantially concurrent copying of different selected portions
of the data. That is, several computer-implemented parallel
copying processes are used to accomplish substantially
concurrent copying. The paraliel processes communicate
with one another to coordinate the copying.

Thus, the present invention provides a system and method
for effectively protecting mission-critical data in a computer
network. Unlike data shadowing or tape backup approaches,
the present invention stores mirrored data and hence main-
tains a substantially current copy of the data, including data
in open files, without limiting access by other users. The
mirrored data is moved by the DTUs to safe distances up to
30 miles or more from the original data. The copied data is
also useable immediately after a disaster, because it has been
copied to the nonvolatile store of a “warm” remote network
server which can be rapidly placed in operation as the new
primary network server.

These and other features and advantages of the present
invention will become more fully apparent through the
following description and appended claims taken in con-
junction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the manner in which the above-recited and
other advantages and features of the invention are obtained,
a more particular description of the invention summarized
above will be rendered by reference to the appended draw-
ings. Understanding that these drawings only provide a
selected embodiment of the invention and are not therefore
to be considered limiting of its scope, the invention will be
described and explained with additional specificity and
detail through the use of the accompanying drawings in
which:

FIG. 1 is a schematic diagram illustrating two data
transfer units of the present invention connecting a primary
network server with a remote network server.

FIG. 2 is a hardware block diagram illustrating the
presently preferred embodiment of the link interface portion
of the data transfer unit of the present invention, including
four parallel processors labeled T1 through T4, a channel
service unit, a boot module, keypad and display I/O devices,
and a nonvolatile buffer.

FIG. 3 is a flowchart illustrating the events involved in
transmitting a packet of mirrored data from the server
interface portion of a primary data transfer unit to a com-
munication link which connects the primary data transfer
unit with a remote data transfer unit.

FIG. 4 is a flowchart illustrating the events involved in
receiving a packet of mirrored data sent from the primary

10

20

25

35

40

45

50

55

60

65

8

data transfer unit over the communication link to the remote
data transfer unit.

FIG. 5 is a flowchart illustrating the events involved in
transmitting a packet of mirrored data from the link interface
of the remote data transfer unit to a remote server interface.

FIG. 6 is a schematic block diagram illustrating software
processes and hardware resources involved in sending data
from the link interface.

FIG. 7 is a schematic block diagram illustrating software
processes and hardware resources involved in receiving data
at the link interface.

FIGS. 8 through 11 are hardware schematic diagrams
illustrating a presently preferred embodiment of a serial
interface to parallel processors of the link interface.

FIGS. 12 through 14 are hardware schematic diagrams
illustrating a presently preferred embodiment of the parallel
processor T4 and a data receiving portion of the channel
service unit.

FIGS. 15 through 19 are hardware schematic diagrams
illustrating a presently preferred embodiment of the parallel
processor T3 and a control portion of the channel service
unit.

FIGS. 20 through 24 are hardware schematic diagrams
illustrating a presently preferred embodiment of the parallel
processor T2 and transmit and IDE portions of the channel
service unit.

FIGS. 25 through 29 are hardware schematic diagrams
illustrating a presently preferred embodiment of the parallel
processor T1, I/O circuits, and boot module.

FIGS. 30 and 31 are hardware schematic diagrams illus-
trating a presently preferred embodiment of a UART/T1
interface for connecting the link interface to a conventional
T1 communication link.

FIG. 32 is a hardware schematic diagram illustrating a
presently preferred embodiment of decoupling and filter
capacitors for use in the data transfer unit.

FIGS. 33 through 35 are hardware schematic diagrams
illustrating a presently preferred embodiment of an IDE
interface portion of the link interface.

FIGS. 36 through 39 are hardware schematic diagrams
further illustrating a presently preferred embodiment of the
boot module.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference is now made to the figures wherein like parts
are referred to by like numerals. With reference to FIG. 1,
the present invention relates to a system and method for
remote mirroring of digital data from a primary network
server 10 to a remote network server 12. The servers 10, 12
are conventional servers for a local area network (“LAN’)
and/or a wide area network (“WAN™).

It is presently preferred that the servers 10, 12 be IBM
PC-compatible servers capable of running the Novell Net-
Ware® operating system. The primary server 10 actually
runs the operating system, while the remote server 12
preferably runs a simple DOS data-capturing program that
transfers data from the remote DTU 40 to the remote disk 20.
Although only one copy of the client-server network oper-
ating system is in use at any time, the remote server is
preferably a “warm” server in that it is equipped with a copy
of the network operating system and may be brought on-line
as the new primary network server if the original primary
network server 10 is disabled.

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 48 of 53 PagelD #: 158

5,537,533

9

Those of skill in the art will appreciate that other hardware
platforms such as 680x0-, PowerPC®, or RISC-based archi-
tectures, possibly in combination with other operating sys-
tems such as UNIX® or NT® operating systems, may also
be advantageously employed in conjunction with the present
invention. POWERPC is a trademark of International Busi-
ness Machines Corp.; UNIX is a registered trademark of
Unix System Laboratories, Inc.; NT is a registered trade-
mark of Microsoft Corp. Also, the servers 10, 12 may be
connected by a conventional LAN or WAN 14 in addition to
the remote mirroring connection provided by the present
invention.

As noted above, “mirroring” means creating a copy of
data as the data travels toward a storage location on non-
volatile media. In the configuration shown in FIG. 1, the
primary server 10 includes two magnetic hard disks 16, 18,
and the remote server 12 includes one magnetic hard disk
20, as nonvolatile server stores. The hard disk 20 preferably
has a storage capacity of at least about 500 Mbytes, and
preferably follows a write-read-verify-acknowledge proto-
col to detect and subsequently avoid bad hard disk sectors.
However, those of skill in the art will appreciate that other
types of nonvolatile media, such as optical disks or RAM
powered by an uninterruptible power supply, may also be
used in either or both of the servers 10, 12.

A presently preferred system embodying the invention
includes a primary data transfer unit (“primary DTU”) 30
and a remote data transfer unit (“remote DTU”) 40. The
primary DTU 30 includes a primary server interface 32 and
a primary link interface 34. The remote DTU 40 similarly
includes a remote server interface 42 and a remote link
interface 44.

Except as otherwise noted herein, the two link interfaces
34, 44 preferably comprise the same hardware and software.
The presently preferred link interface software can identify
attributes of data packets and, based on these attributes and
the direction of packet movement, the software can deter-
mine whether it resides on the primary DTU 30 or on the
remote DTU 40. Appropriate portions of the software may
thus be invoked on each DTU 30, 40 without requiring the
user to manually set a hardware switch or take similar
action. The two server interfaces 32, 42 likewise preferably
comprise identical hardware controlled by appropriate por-
tions of identical software. As used herein, “software”
includes firmware, object code, and other program instruc-
tions capable of controlling microprocessors or other com-
“puter hardware.

It is presently preferred that the network operating system
on the primary network server 10 mirror the data and then
transmit the mirrored data to the primary DTU 30. Conven-
tional operating systems such as Novell NetWare® provide
suitable local mirroring or duplexing capability. Conven-
tional hardware and software provide mirroring and local
transmission of the mirrored data for distances of about fifty
feet.

According to the teachings herein, the network operating
system is made to see the remote disk 20 as simply another
drive available to the primary server 10, and so is able to use
its mirroring utility and the present invention to remotely
mirror data to that disk 20 even when the disk 20 is miles
away from the primary server 10. Moreover, the mirrored
data includes a substantially concurrent copy of original
critical data, including data which is being sent by the
operating system to the local disk 16 for storage in a
presently open file of the primary network server 10.

Advantageously, the present invention does not require
that the primary server 10 and the remote server 12 utilize

25

40

45

55

60

65

10

identical hardware or that their hard disks 16, 20 operate in
lockstep with each other. The present invention also does not
require transmission of substantial amounts of information
other than the user’s critical data. Unlike conventional
remote duplication of an entire file server, such as with
Novell SFT III, the remote mirroring of file data according
to the present invention does not require transmission of
CPU registers, cache, operating system process contexts,
and the like between the primary and remote servers 10, 12.

Thus, the bandwidth of the link 50 between the DTUs 30,
40 which is required for effective performance of the present
invention is substantially lower than the bandwidth that
would be required to remotely mirror an entire file server. A
link 50 having a bandwidth of about 1.5 Mbits/sec is
adequate for many applications of the present invention,
whereas full server mirroring could require a communica-
tion link 50 bandwidth of at least about 100 Mbits/sec. The
present invention will operate over existing communication
links 50, such as existing telephone and data lines, without
requiring the user to lay a new dedicated fiber optic cable or
other high-bandwidth signal carrier.

The server interface 32 is preferably configured such that
it emulates a conventional /O device controller in commu-
nicating with the server 10. In particular, it is presently
preferred that the server interface 32 emulate a hard disk
drive controller. Thus, the hardware and operating system of
the server 10 communicate with the server interface 32 as
they would communicate with the controllers of conven-
tional hard disk drives 16, 18.

Hard disk controller emulation by the server interface 32
allows utilization of the built-in data duplication capability
of the operating system of the primary server 10. The
operating system is instructed in a conventional manner to
duplicate critical data as that data is sent toward the main
disk 16. The duplication may utilize one or more I/O
channels. In the configuration illustrated in FIG. 1, the
duplicated data is copied to the local disk 18 to guard against
data loss from failure of the main disk 16. More importantly,
a duplicate of the data is also routed to the server interface
32 for remote mirroring by way of the present invention.

The server interface 32 passes the mirrored data it
receives from the server 10 to the link interface 34. The
server interface 32 shown in FIG. 1 communicates with the
link interface 34 by way of a high-speed serial link 36, but
those of skill in the art will appreciate that paraliel links may
be employed in other embodiments. One combination of
hardware and software which is suitable for use as either the
primary server interface 32 or the remote server interface 42
is the StandbyServer product available from Vinca Corpo-
ration of Orem, Utah.

FIG. 2 illustrates a presently preferred embodiment of the
link interface 34. The link interface 34 includes four parallel
processors 60, which are individually labelled T1 through
T4 in FIG. 2. Parallel processors are miCroprocessors
designed specifically for interprocess communication and
hence are well-suited for use in parallel processing applica-
tions. Each parallel processor 60 includes an arithmetic and
logical processing unit and local RAM accessible by that
processing unit. Each parallel processor 60 also includes
four serial communication ports 62, which are individually
labelled L0 through L3.

It is presently preferred that each of the parallel proces-
sors 60 include a Transpurer® microprocessor; Transputer is
a registered trademark of Inmos Ltd. Presently preferred
embodiments of the parallel processors 60 and serial ports
62 are further illustrated in the hardware schematic diagrams

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 49 of 53 PagelD #: 159

5,537,533

1

of FIGS. 8 through 29, but those of skill in the art will
appreciate that other embodiments may also be utilized
according to the present invention.

With reference once more to FIG. 2, the link interface 34
also includes a boot module 64 (“boot TRAM™). As further
llustrated in FIGS. 36 through 39, the boot TRAM 64
preferably contains an EPROM which holds the boot pro-
gram that loads the operating software which controls the
link interface 34 to perform the operations described herein.

As shown in FIG. 2, the preferred embodiment of the link
interface 34 also contains a nonvolatile buffer 66. The
presently preferred nonvolatile buffer 66 is a conventional
magnetic hard disk drive 68. However, optical drives, RAM
powered by an uninterruptible power supply, or other non-
volatile storage media may also be utilized according to the
present invention.

A channel service unit (“CSU”) 70 acts as the direct
interface between the rest of the link interface 34 and the
conventional communication link 50. A presently preferred
embodiment of the CSU 70 contains circuits for receiving
data from the parallel processors 60 (FIGS. 12 through 14),
control circuits (FIGS. 15 through 19), and circuits for
transmitting data to the communication link 50 (FIGS.
20-24, 30-31, and 33-35).

With reference to FIGS. 2 and 25-31, the link interface 34
preferably also includes a keypad 72, a display such as a
liquid crystal display (“L.CD™) 74, and supporting circuitry.
Thus, the link interface 34 is capable of providing perfor-
mance and diagnostic information in human-readable for-
mat. Additional information and control are preferably avail-
able via an auxiliary computer 76 which may be placed in
serial communication with the link interface 34.

With reference to FIG. 2, the parallel processors T1
through T4 are interconnected by serial communication lines
78. Additional serial communication lines 80 connect one or
more of the parallel processors 60 with the server interface
32, the boot TRAM 64, and the optional auxiliary computer
76. A data bus 82, which is preferably 16 bits wide, connects
the parallel processor T2 to the nonvolatile buffer 66. Other
data buses 84, which are preferably 8 bits wide, connect the
CSU 70 to the parallel processors T2 and T4. Control lines
86 connect the CSU 70 with parallel processors T2, T3, and
T4.

Presently preferred embodiments of the communication
lines, data buses, and control buses, and their associated
buffers and processors, are illustrated in FIGS. 8 through 39,
but those of skill in the art will appreciate that other
embodiments may also be utilized according to the present
invention. Moreover, although particular assignments of the
serial ports 62 are illustrated, other port assignments may
also be utilized according to the present invention.

As a very simple example, the assignments of port L0 and
port L1 of parallel processor T1 could be swapped in the
hardware and software of the link interface 34, such that port
L.0 would connect to the boot TRAM 64 and port L1 would
connect to the auxiliary computer 76. Moreover, the labeling
of the parallel processors may also vary. Indeed, the pro-

cessors labelled T1 through T4 in FIGS. 2 through 7 are -

respectively denoted T4 through T1 in the hardware sche-
matics of FIGS. 8 through 39.

The link interface 34 is further illustrated by the flow-
charts shown in FIGS. 3 through 5 and the process block
diagrams in FIGS. 6 and 7. Those of skill in the art will
appreciate that certain portions of the data flow steps shown
in FIGS. 3 through 5 are preferably accomplished substan-
tially in parallel. For instance, steps accomplished by data

10

20

25

30

40

55

60

65

12

reading and data writing processes are performed substan-
tially concurrently by at least two parallel processors.
With reference to FIGS. 1 and 2, during remote mirroring
several tasks are generally performed by the data transfer
units 30, 40. Mirrored data is moved from the server 10 to
the primary DTU 30. The data is moved from the primary
DTU 30 to the communication link 50. The data is moved
from the communication link 50 to the remote DTU 40, and
from the remote DTU 40 to the remote disk 20. In addition,
an acknowledgement may be generated and sent to the
primary server 10 indicating that the data has been received.

With reference now to FIGS. 1, 2, 3, and 6, the task of
moving data from the server 10 to the primary DTU 30 is
presently accomplished by moving each packet of data sent
from the server 10 as follows. A process in T4 reads half of
the waiting packet’s header from the server 10, while a
substantially parallel (i.e., concurrent) process in T3 reads
the other half of the header. T4 then transmits at least a
portion of its half of the packet header to T3.

Next, T3 parses the two halves of the packet header and
determines the length of the data portion of the waiting
packet. This length is transmitted back to T4. T4 and T3 then
concurrently read the data, with half of the data being read
by a process on each parallel processor. As shown in FIG. 6,
T3 and T4 are each equipped with a data transmit buffer to
hold the data. T4 and T3 concurrently transmit their respec-
tive halves of the data to T2, where the data resides in the T2
data transmit buffer. The data transmit buffers are preferably
implemented with static RAM (FIGS. 13, 16, and 21).

With reference now to FIGS. 1, 2, 3, and 6, the task of
moving the data from T2 to the communication link 50 is
presently accomplished as follows. If the packet is an
acknowledgement generated outside the DTUs 30, 40, the
packet may be thrown away if the DTUs are configured to
generate their own acknowledgements as described herein.
Otherwise, T2 generates a packet header which uniquely
identifies the data, and writes (“dispatches™) the header and
data to the nonvolatile buffer 66. T2 also sends a copy of the
data to the CSU 70, which prepares the data for transmission
and places it on the communication link 50. The preparation
preferably includes computing a checksum on the data so
that CRC error checking or another conventional algorithm
can be used to detect transmission errors and cause retrans-
mission of the data to the remote DTU 40. The data may be
compressed and/or encrypted using conventional algorithms
and hardware before it is placed on the communication link
50.

The communication link 50 may be a telecommunications
T1 (also known as “DS1”), T2 (“DS2”), T3 (“DS3”), E1, E2,
or E3 link, a fractional T1 link, an Asynchronous Transfer
Mode (“ATM”) link, a Frame Relay link, a so-called “10
megabit per second bridged service” link having a band-
width of approximately 10 Mbits/second, an analog tele-
phone line connected to modems, an Ethernet, an ISDN link,
a 56-switched link, or another conventional communication
link. The link 50 may include physical connections in the
form of cables, twisted pair wires, analog telephone lines,
microwave transmitters and receivers, optical fibers, or other
conventional signal carriers. The output end of the commu-
nication link 50 is preferably physically separated from its
input end by a distance of at least 100 feet, and may be
separated by thousands of feet or even by many miles.

The link interface 34 is preferably implemented at least in
part with a communication-link-specific daughter board
which snaps into a connector on an interface motherboard.
The CSU 70 (FIG. 2) is preferably located on such a

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 50 of 53 PagelD #: 160

5,537,533

13

daughter board, with the parallel processors 60 being located
on the motherboard. Thus, the hardware changes needed to
tailor the link interface 34 to different communication links
are easily effected in the field.

With reference now to FIGS. 1, 2, 4, and 7, the task of
moving data from the communication link 50 to the remote
disk 20 is accomplished by the remote DTU 40 as follows.
T4 reads a data packet from the CSU 70. Recalling that the
DTUs 30 and 40 preferably comprise identical hardware,
note that the CSU 70 now referred to is part of the remote
DTU 40, not part of the primary DTU 30.

T4 then examines the data packet. If the packet is an
acknowledge generated by the DTUs, T4 sends the acknowl-
edge to T2, and T2 clears the appropriate entry in a packet
allocation table, thereby freeing space on the nonvolatile
buffer 66. If the packet is a data packet, T4 sends half of the
packet to T3. Then T4 and T3 concurrently write their
respective halves of the data packet to the remote server 12.

With reference to FIGS. 1, 2, 5 and 7, the present
invention optionally includes the task of sending a “spoof
packet” as an acknowledgement to the primary server 10
indicating that the data has been received. The spoof packet
is in the format of an acknowledgement that would be sent
by a conventional hard disk drive controller when the
operating system writes data to the hard disk. As described
below, the user may specify which of several events should
trigger generation of a spoof packet, and may enable or
disable spoofing to balance server 10 performance against
the risk of lost data.

In a presently preferred embodiment, the invention gen-
erates a spoof packet and sends the spoof packet to the
operating system of the primary network server 10 in
response to any of several user-selectable trigger events. For
instance, users may choose to generate and send a spoof
packet after the primary DTU 30 receives the mirrored data,
after the data is stored in the nonvolatile buffer 66 of the
primary DTU 30, after the data has been transferred to the
communication link 50 by the primary DTU 30, after the
data has been received from the communication link 50 by
the remote DTU 40, or after the data is transferred to the
remote server 12. The spoof packet may also be generated
and sent a given time after one of these trigger events.
Alternatively, the invention may be configured to generate
no spoof packets but to instead simply pass along to the
primary server 10 the acknowledgements generated by the
nonvolatile store 20 of the remote server 12.

The spoof packet is preferably generated by the DTU
involved in the triggering event. For instance, if the trigger
is storage of the mirrored data in the nonvolatile buffer 66 of
the primary DTU 30, T2 prepares a spoof packet acknowl-
edging receipt of the data. Before sending a spoof packet, T2
first determines that the packet being transmitted is a data
packet that needs to be spoofed. T2 then sends the spoof
packet to T4. T4 divides the spoof packet in half and sends
half to T3. Then T3 and T4 concurrently write their respec-
tive halves of the spoof packet to the primary server 10. Note
that the spoof packet may be received by the primary server
10 before the data reaches the remote hard disk 20. The
acknowledgement packet generated by the hard disk 20 or
by its controller will be thrown away and thus will never
reach the primary server 10, which receives the spoof packet
instead.

In addition to specifying a triggering event, it is presently
preferred that the user be permitted to specify a cache buffer
threshold which determines whether or not spoofing is
enabled. Data destined for eventual storage in a nonvolatile

10

15

30

40

45

50

55

60

65

14

store is typically written first to a volatile cache buffer (not
shown) in the primary network server 10. Cache buffers
which hold data that has not yet been written to a nonvolatile
store, i.e., data which is held pending a write, are conven-
tionally termed “dirty cache buffers.”

The total storage capacity of the primary server’s cache
buffers is limited. If the cache buffers fill up, performance of
the primary server 10 may decrease perceptibly because the
network operating system waits for an acknowledgement
after each disk write before proceeding. Without spoofing,
such acknowledgements may be long in coming because the
“oldest” data, i.e. data written first to the cache buffers, has
priority over other data for disk writes. Thus, if burst traffic
occurs from the primary server 10 to the cache buffers
associated with the server interface 32, and the magnitude of
that burst traffic exceeds the bandwidth of the link 50, then
the percentage of cache buffers which are dirty may increase
to a point where overall server 10 disk access performance
becomes very poor.

Enabling spoofing generally helps clean out the dirty
cache buffers because the network operating system on the
primary server 10 generally receives spoofing packets
sooner than acknowledgements that are generated by the
remote nonvolatile store 20. However, spoofing is preferably
disabled when the percentage of cache buffers that are dirty
falls below a user-specified threshold, e.g., 75 percent.
Depending on the trigger event which causes generation of
the spoof packet, the data being acknowledged has various
degrees of vulnerability to loss in the event of a disaster.
Some users may elect to disable spoofing permanently to
avoid possible data loss. Dirty cache information is readily
obtained by software, such as a NetWare Loadable Module
or the equivalent, and relayed from the primary server 10 to
the link interface 32 for use in enabling or disabling spoof-
ing.

With reference to FIG. 1, the typical general operation of
the present invention thus proceeds as follows. The network
operating system on the primary server 10 copies critical
data which is destined for the local hard disk 16. The
operating system sends the mirrored data to a device it sees
as simply another hard drive controller, but which is actually

" the server interface 32.

The server interface 32 transmits the mirrored data to the
link interface 34, which stores the data on a local disk drive
68 (FIG. 2) and sends the primary server’s operating system
a spoof packet acknowledging receipt of the data. The link
interface 34 then sends the mirrored data across the con-
ventional communication link 50 to the remote DTU 40,
which is located at a safe distance from the primary DTU 30.
The remote DTU 40 sends the mirrored data in turn to the
remote network server 12, where it is stored on a remote
hard disk 20.

Although a configuration involving only two network
servers 10, 12 is illustrated, those of skill in the art will
appreciate that additional servers may also be employed
according to the present invention. For instance, a primary
and secondary server may be located in the same room while
a tertiary server is located miles away. The primary server
would then locally mirror data to the secondary server by
conventional means, and would remotely mirror critical data
to the tertiary server according to the present invention.

Thus, the present invention provides a system and method
for effectively protecting mission-critical data in a computer
network. Unlike data shadowing or tape backup approaches,
the present invention stores mirrored data and hence main-
tains a substantially current copy of the data, including data

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 51 of 53 PagelD #: 161

5,537,533

15

which is being written to open files, without limiting access
by other users. The mirrored data is moved by the DTUs to
safe distances that may be many miles from the original
data. The copied data is also useable immediately after a
disaster, because it has been copied to the hard disk of a
“warm” remote network server which can be rapidly
installed as the new primary network server.

The invention may be embodied in other specific forms
without departing from its spirit or essential characteristics.
The described embodiments are to be considered in all
respects only as illustrative and not restrictive. Any expla-
nations provided herein of the scientific principles employed
in the present inventjon are illustrative only. The scope of the
invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed and desired to be secured by patent is:

1. A system for remote mirroring of digital data from a
primary network server to a remote network server, each
network server having its own nonvolatile server store, said
system comprising a primary data transfer unit and a remote
data transfer unit, wherein:

said primary data transfer unit comprises:

a primary server interface which is digitally connect-
able to the primary network server, said primary
server interface having sufficient bandwidth and sig-
nal compatibility to receive mirrored digital data
from the primary network server, the mirrored data
being a substantially concurrent copy of original data
which is destined for storage in the nonvolatile
server store of the primary network server; and

a primary link interface digitally connected to said pri-

mary server interface and capable of receiving the

mirrored data from said primary server interface, said
primary link interface connectable to a communication
link and capable of sending the mirrored data across the
link to said remote data transfer unit, said primary link
interface further comprising;
a nonvolatile data buffer for temporarily storing the
mirrored data; and
spoof packet generator capable of generating a pre-
acknowledgement for transmission to the primary
network server by said primary link interface after
the mirrored data has been stored on said non-
volatile data buffer and before an acknowledge-
ment arrives indicating that the mirrored data has
been stored by the remote network server;

and said remote data transfer unit comprises:

a remote link interface connectable to the communica-
tion link for receiving the mirrored data sent across
the link by said primary data transfer unit; and

a remote server interface which is digitally connected
to said remote link and capable of receiving the
mirrored data from said remote link, said remote
server interface being digitally connectable to the
remote network server and having sufficient band-
width and signal compatibility to send the mirrored
data to the remote network server.

2. The system of claim 1, wherein said nonvolatile data
buffer comprises a magnetic hard disk.

3. The system of claim 1, wherein said primary server
interface receives from the primary network server a sub-
stantially concurrent copy of original data which is being
written to an open file in the nonvolatile server store of the
primary network server.

4. The system of claim 1, wherein said primary server
interface receives from the primary network server a sub-

15

20

25

30

35

40

45

50

55

60

65

16

stantially concurrent copy of substantially all original data
which is being stored in the nonvolatile server store of the
primary network server.

5. The system of claim 1, wherein each of said data
transfer units comprises a microprocessor and a block of
volatile random access memory which is accessible by the
microprocessor.

6. The system of claim 1, wherein each of said data
transfer units comprises a plurality of digitally intercon-
nected paralle]l processors, and each of said parallel proces-
SOTS comprises:

a processor;

a block of volatile random access memory which is

accessible by the processor; and

at least one interprocessor communication line which
supports communication between at least two of said
parallel processors.

7. The system of claim 6, wherein said interprocessor
communication line is a serial communication line.

8. The system of claim 6, wherein each of said data
transfer units comprises a plurality of said parallel proces-
sors which are capable of substantially concurrently pro-
cessing different selected portions of the mirrored data.

9. The system of claim 1, wherein said primary data
transfer unit and said remote data transfer unit comprise
substantially identical hardware.

10. The system of claim 1, wherein said primary data
transfer unit and said remote data transfer unit comprise
substantially identical hardware and substantially identical
software.

11. The system of claim 1, wherein said primary link
interface is physically separated from said remote link
interface by a distance of at least 100 feet.

12, The system of claim 1, wherein said primary link
interface is physically separated from said remote link
interface by a distance of at least 10,000 feet.

13. The system of claim 1, wherein said primary link
interface is physically separated from said remote link
interface by a distance of at least 30 miles.

14. The system of claim 1, wherein said system is
configured such that the mirrored data is sent to the remote
network server by the remote server interface within a delay
time from the time the mirrored data is received by the
primary server interface.

15. The system of claim 14, wherein said data transfer
units are configured such that said delay time is less than one
second.

16. The system of claim 14, wherein said data transfer
units are configured such that said delay time is less than ten
seconds.

17. The system of claim 1, wherein each of said link
interfaces is connectable to a T1 communication link and
said link interfaces are capable of transferring the mirrored
data across the T1 communication link.

18. The system of claim 1, wherein each of said link
interfaces is connectable to an E1 communication link and
said link interfaces are capable of transferring the mirrored
data across the E1 communication link.

19. The system of claim 1, wherein each of said link
interfaces is connectable to an ISDN communication link
and said link interfaces are capable of transferring the
mirrored data across the ISDN communication link.

20. The system of claim 1, wherein each of said link
interfaces is connectable to an analog telephone line com-
munication link and said link interfaces are capable of
transferring the mirrored data across the analog telephone
line communication link.

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 52 of 53 PagelD #: 162

5,537,533

17

21. The system of claim 1, wherein said primary link
interface further comprises means for generating a check-
sum corresponding to given data, and said remote link
interface further comprises corresponding means for using
said checksum to detect transmission errors and for request-
ing retransmission of the given data by said primary link
interface.

22. The system of claim 1, wherein said primary link
interface further comprises a data compression means for
compressing data prior to sending the data across the com-
munication link, and said remote link interface further
comprises a corresponding data decompression means for
decompressing data that was compressed by said data com-
pression means.

23. The system of claim 1, wherein said primary link
interface further comprises a data encryption means for
encrypting data prior to sending the data across the com-
munication link, and said remote link interface further
comprises a corresponding data decryption means for
decrypting data that was encrypted by said data encryption
means.

24. The system of claim 1, wherein each of said data
transfer units further comprises a diagnostic unit which is
digitally connected to said link interface and which is
capable of providing selected status and diagnostic infor-
mation about said link interface in a human-readable format.

25. A method for remote mirroring of digital data, said
method comprising the steps of:

copying the data from a primary network server to a

nonvolatile data buffer in a data transfer unit which is
digitally connected to the primary network server, the
primary network server including an operating system
which is capable of accessing a nonvolatile server
store, the data copied to the data transfer unit being a
substantially concurrent copy of data which is being
stored by the operating system in the nonvolatile server
store of the primary network server;

copying the data from the data transfer unit to an input end

of a communication link which has an output end
physically separated from its input end;

generating and sending a spoof packet to the operating

system of the primary network server; and

copying the data from the output end of the communica-

tion link to a nonvolatile server store on a remote
network server.
26. The method of claim 25, wherein said step of gener-
ating and sending a spoof packet precedes said step of
copying the data from the output end of the communication
link.
27. The method of claim 23, wherein said step of gener-
ating and sending a spoof packet occurs in response to a
triggering event selected by a user from the group consisting
of:
receipt of the data by the data transfer unit which is
digitally connected to the primary network server;

storage of the data in a nonvolatile buffer in the data
transfer unit which is digitally connected to the primary
network server;

copying of the data from the data transfer unit to the input

end of the communication link;

copying of the data from the output end of the commu-

nication link to a second data transfer unit which is
digitally connected to the remote network server; and

copying of the data to the remote network server.

10

15

20

25

30

35

40

45

50

55

60

18

28. The method of claim 25, wherein said step of copying
the data from a primary network server to a data transfer unit
comprises substantially concurrent copying of different
selected portions of the data, said substantially concurrent
copying being performed by a plurality of computer-imple-
mented paralle] copying processes which communicate with
one another to coordinate said substantially concurrent
copying.

29. The method of claim 25, wherein data which is being
stored by the operating system in the nonvolatile server store
of the primary network server travels along an internal
communication path having a predetermined internal band-
width, and said step of copying the data from the data
transfer unit to the input end of the communication link
comprises:

buffering at least some of the data within the data transfer

unit; and

copying the data to a communication link which has a

lower bandwidth than the internal bandwidth of the
primary network server.

30. The method of claim 25, wherein said step of copying
the data from a primary network server to a data transfer unit
comprises the steps of:

copying a data packet header from the primary network
server to the data transfer unit, the header including an
indication of the length of the packet; and

copying additional data from the primary network server
to the data transfer unit based on the indication of the
length of the packet.

31. The method of claim 30, wherein said step of copying
a data packet header comprises substantially concurrent
copying of different selected portions of the data packet
header, said substantially concurrent copying being per-
formed by a plurality of computer-implemented parallel
copying processes which communicate with one another to
coordinate said substantially concurrent copying.

32. The method of claim 31, wherein said step of copying
additional data comprises substantially concurrent copying
of different selected portions of additional data, said sub-
stantially concurrent copying being performed by a plurality
of computer-implemented parallel copying processes which
communicate with one another to coordinate said substan-
tially concurrent copying.

33. The method of claim 25, further comprising the steps
of:

compressing the data prior to said step of copying the data
from the data transfer unit to the input end of the
communication link; and

decompressing the data after said step of copying the data
from the output end of the communication link.
34. The method of claim 25, further comprising the steps
of:
encrypting the data prior to said step of copying the data
from the data transfer unit to the input end of the
communication link; and

decrypting the data after said step of copying the data
from the output end of the communication link.

L T I T

Case 1:13-cv-00440-LPS Document 6-1 Filed 03/26/13 Page 53 of 53 PagelD #: 163

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,537,533 Page 1 of 1
APPLICATION NO. : 08/289902

DATED : July 16, 1996

INVENTORC(S) : Vaughn Staheli et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title page, item [21], delete “289,902” and insert --08/289,102--,

Signed and Sealed this
Twenty-fifth Day of October, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 1 of 21 PagelD #: 164

EXHIBIT B

case T aropaaots Bocment = RN A 0 AR TR PRNAN

US006598131B2
a2z United States Patent (10) Patent No.: US 6,598,131 B2
Kedem et al. 45) Date of Patent: Jul. 22,2003
’
(549) DATA IMAGE MANAGEMENT VIA 5,390,331 A 2/1995 Yui
EMULATION OF NON-VOLATILE STORAGE 5452454 A 9/1995 Basu
DEVICE 5,471,674 A 11/1995 Stewart et al.
5727170 A 3/1998 Mitchell et al.
(75) TInventors: Zvi M. Kedem, New York, NY (US); 3,802,297 A 91998 - Engquist
Davi Geiger, New York, NY (US); 5,815,706 A 9/1998 Stewart et al.
Salvatore Pz;xia New Y,0rk NY (EJS) 5,819,065 A * 10/1998 Chilton et al. 395/500
Arash Baratloo, New York, NY (US); (List continued on next page.)
Peter Wyckoff, New York, NY (US
eter Vyekot, New tork (US) Primary Examiner—3B. James Peikari
(73) Assignee: Ondotek, Inc., New York, NY (US) (74) Antorney, Agent, or Firm—Rothwell, Figg, Ernest &
Manbeck
(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. A data image management system (DIMS) that includes a
local data image manager (LDIM), a remote data image
(21) Appl. No.: 10/268,898 manager (RDIM), and a remote persistent storage device
. (RPSD). The LDIM communicates with the RDIM through
(22) Filed: Oct. 11, 2002 a direct communication link or through a communication
(65) Prior Publication Data network. The RDIM can store data on and retrieve data from
the RPSD. In an environment where an LDIM has been
US 2003/0037202 Al Feb. 20, 2003 installed in a computer having a “local” persistent storage
L. device (LPSD), the DIMS allows for the storing of the
Related U.S. Application Data LPSD’s data image on the RPSD, with the LPSD serving as
o L a persistent, consistent cache of the data image. The data
(63) ?60 n;glggt1§§\;)f1)§?p£gatéoi17§g.2£9/ 690,058, filed on Oct. image stored on the RPSD is referred to as the “master data
(60) Provisional application No. 60/163,954, filed on Nov. 8, image” an:i the data lmage SaChe‘fi on the LPSD 18 reﬁerred
1999, provisional application No. 60/211,291, filed on Jun. to as the “local data image” or “cached data image.” The
13, 2000, and provisional application No. 60/240,138, filed LDIM functions to intercept read/write requests that are
on Oet. 13, 2000. intended to be received by the LPSD. The read/write
(51) Int.CL7 oo, GOGF 13/368; GOGF 13/16 requests specily an address of the LPSD. Upon intercepting
(52) US.CL oo 711/147; 711/130; 709/216; @ read request, the LDIM is programmed to determine
714/29 whether the portion of the cached data image that is stored
58) Field of Searchc.ccccccoeee 709/216, 219; at the specified address is up-to-date. If it is up-to-date, the
(58) Field o eal%cll 1.6, 118, 124. 130, 147 /162, 165, LDIM retrieves the requested data from the LPSD and
S /29’ passes the data back to the component or device from which
’ it received the request. If it is not up-to-date, the LDIM
(56) References Cited transmits the read request to the RDIM. Upon receiving the
read request, the RDIM locates and reads the requested data
U.S. PATENT DOCUMENTS from the master data image stored on the RPSD and then
5.146.568 A 9/1992 Flaherty et al transmits the data back to the LDIM.
5,230,052 A 7/1993 Dayan et al.
5,280,627 A * 1/1994 Flaherty et al. 713/2 44 Claims, 9 Drawing Sheets
LDIM
,,,,,,,,,,,,,,,,,,,,,,,,,, o
i 407 0 1
I /') I
| ETHERNET FLASH RAM |
! CONTROLLER RAM !
CONNECTOR 402
0 JET =
| DUAL PORTED !
ETHERNET | | |
CONNECTOR | R s cR !
i 404 N_ 408 |
I ™~ ‘ I
| DUAL PORTED D {
| Ri 2 ADAPTER |
EENE L - COSJEOL ~_40 |
CONNECTOR j FARD DK |
420 ‘ BUFFER SECONDARY !
‘ \405 (STORAGE) {
HOSTOE | | 40 N 405 SO Mt

CONNECTOR

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 3 of 21 PagelD #: 166

US 6,598,131 B2

Page 2
U.S. PATENT DOCUMENTS 5,991,542 A * 11/1999 Han et al. 395/712
5991,875 A 11/1999 Paul
5828887 A 10/1998 Yeager et al. 5996,028 A 11/1999 Niimi et al.
5896302 A * 41999 Tshii w.ooooooeriroirns 365/189.04 6.185.580 B1 * 22001 Day, ITT et al. wooo.. 2071205
3,918,229 A 6/1999 Davis et al. 6,434,695 Bl * 82002 Fsfahani et al. ..ovove.... 71372

5963941 A 10/1999 Hirakawa
5963971 A * 10/1999 Fosler et al. 711/114))
5,987,506 A * 11/1999 Carter et al. 709/213 * cited by examiner

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 4 of 21 PagelD #: 167

U.S. Patent Jul. 22, 2003 Sheet 1 of 9 US 6,598,131 B2

108

- __(APPLICATIO
USER) ~ Froceuis
102

A

110

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 5 of 21 PagelD #: 168

U.S. Patent Jul. 22, 2003 Sheet 2 of 9 US 6,598,131 B2

204

210

NIC

FIG.2

108

/5)0

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 6 of 21 PagelD #: 169

U.S. Patent Jul. 22, 2003

Sheet 3 of 9

US 6,598,131 B2

CPU

302
L~/

%\,303
304

DA L~
LDIM 302(a)
202
308 10
//,,) NETWORK
| \ 210
~— 312 _}f"’
PROCESSOR/LOGIC CIRCUITS ‘
& MEMORY iy —
310

/1-312

Y
HARD DISK

302(b)

A

FIG.3

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 7 of 21 PagelD #: 170

(o]
[=a) .
= 7914
1,
x re T s TR = =
o AN S0t T\ |
- | (ovdoLs | gqp |
= | AYYONQD3S) y314ng _
_ %SI0_QYVH _
| | UNn [™
| 0y "\ T04INOD |
y3Ldvav
N | ¢ W !
z “ 3 031404 VNG “
2 _ !
= BN co¥ \//\ o |
_ — | [9OI03INNOD
_ Ndd L RIRETETE
o _ 3L¥0d ¥VNa | /
S _ m
5 | L 09%
z | 207\ 4OLJINNOD | |
= | "~ Y Y3ITIONINOD _ _
| HSV4 IINY3HLI |
Dt _ |
= | \.\ \.\ _
= | 60¥ L0Y _
Dnm L o o o o o e e e e e e e e e |
: AN
« NI
-

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 8 of 21 PagelD #: 171

U.S. Patent

12°)

US 6,598,131 B2

Sheet 5 of 9

Jul. 22, 2003

Il4

SIA

ON

\H\
i | e
A58 13 0¥0 WYI1D
118 oyl
040 WVITD WA e
swis | | wa || we || o
M 080 135 AS8 WA RS
wldng |_| wowss |_|sudowwvd|_| L
OL ILI4M HOL34 vy FES

ANVNNOD
0d

A

US 6,598,131 B2

Sheet 6 of 9

Jul. 22, 2003

m: _ v o e
AS8 1353 oYl 135 SNIVIS ~“gax| VA0 Y
ON *

4 ON
SNLVLS ONVANOD SYILIMvavd | _ | L8 —
LM 31N03X3 WE ASg 135 ON

|
oYl IV N Y
VI IV Tf| sy
ON 0
SyllIwwvd | | dow3s | | snwis || L8 ON
vy LM EIT AS8 ¥vVA1D

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 9 of 21 PagelD #: 172
U.S. Patent

!

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 10 of 21 PagelD #: 173

U.S. Patent Jul. 22, 2003 Sheet 7 of 9 US 6,598,131 B2

HOST COMPUTER PI' COMMANDS

(smwr)

Y

WRITE
PARAMETERS

Y

WRITE
COMMAND
OPCODE

v |
NO

INTERRUPT

READ
STATUS

Y

READ
BUFFER

Y

C o)
FIG.b

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 11 of 21 PagelD #: 174

U.S. Patent Jul. 22, 2003 Sheet 8 of 9 US 6,598,131 B2

HOST COMPUTER PO COMMANDS

(SIART)

Y

WRITE
PARAMETERS

Y

WRITE
COMMAND
OPCODE

1 |

YES

WRITE
BUFFER

{ |

INTERRUPT

YES

READ
STATUS

END FlG.7

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 12 of 21 PagelD #: 175

U.S. Patent Jul. 22, 2003 Sheet 9 of 9 US 6,598,131 B2

HOST COMPUTER ND COMMANDS

(smr)

!

WRITE
PARAMETERS

|

WRITE
COMMAND
OPCODE

-}

YES

READ
STATUS

$
(=0)

FI1G.8

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 13 of 21 PagelD #: 176

US 6,598,131 B2

1

DATA IMAGE MANAGEMENT VIA
EMULATION OF NON-VOLATILE STORAGE
DEVICE

This application is a continuation of U.S. patent appli-
cation Ser. No. 09/690,058 filed on Oct. 16, 2000, now U.S.
Pat. No. 6,477,624, which claims the benefit of the following
three U.S. Provisional Patent Applications: (1) U.S. Provi-
sional Patent Application No. 60/163,954, filed, Nov. §,
1999; (2) U.S. Provisional Patent Application No. 60/211,
291, filed, Jun. 13, 2000; and (3) U.S. Provisional Patent
Application No. 60/240,138, filed, Oct. 13, 2000. All of the
above mentioned patent applications are incorporated herein
in their entirety by this reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is generally related to persistent
storage devices, and, more specifically, to a system and
method for enabling the centralized storage and maintenance
of persistent storage device data images.

2. Discussion of the Background

In general, the ability to store and access data is critical for
computers. For example, when turned on, a computer (e.g.,
a personal computer (“PC”)) accesses, and prepares (or
“boots”) the operating system from its local persistent
storage device (e.g., “hard disk”). Once the booting is
finished, the contents of the hard disk are accessible and
available to the user. The contents of the hard disk (also
referred to as the hard disk’s “disk image™ or “data image™)
define the user’s personalized environment: the operating
system (such as Windows 98 SR-2, Linux, etc.), the software
applications (such as word processors, spreadsheet
programs, web browsers, etc.), the data files (such as
documents, spreadsheets, images, or cookies), and any addi-
tional customization (such as whether a particular web
browser, such as Netscape Navigator or Internet Explorer, is
automatically launched when an HTML file is accessed).

A hard disk is but one example of a persistent storage
device. A persistent storage device can be defined as follows:

(a) it is a physical device that is physically attached to a
computer using a standard physical interface (e.g., a
hard disk attached with an IDE cable). This physical
interface provides the link between the persistent stor-
age device and the computer. (If the persistent storage
device under consideration is a hard disk, the physical
interface is frequently called a connector and is typi-
cally attached to a hardware component on the com-
puter called the disk adapter, which itself provides the
logical link between the persistent storage device and
the computer);

(b) it contains a local permanent medium (e.g., magnetic
media) for storing a sequence of bits, (i.e., data),
typically organized according to a particular file struc-
ture. The bits are collectively called the persistent
storage device data image (PSDDI), or data image (DI)
for short. When the persistent storage device is a hard
disk, the persistent storage device data image will
frequently be called a “disk image.” Typically, the local
permanent medium is capable of storing a large amount
of data (e.g., more than 10 Megabytes);

(c) it has the ability to selectively read and write any part
of the data image; and

(d) it allows the computer to which the device is attached
to selectively read and write any part of the data image
through a standard set of interface protocols.

10

15

20

25

30

35

40

45

50

55

60

65

2

The scope of persistent storage devices includes all hard
disk drives implementing interfaces such as ST506/412,
ESDI, SCSI, IDE, ATA, ATAPI, ATA-E and EIDE, read/
write CD ROM drives, ZIP drives, JAZ drives, floppy drives
and the like. In addition, the present invention applies to
embedded systems’ persistent storage devices, such as,
Flash, and DiskOnChip.

Any two “hardware-similar” PCs having the same data
image would appear the same to the user. In contrast, if a
user’s data image is replaced by a significantly different data
image, the user will most likely see an unfamiliar desktop
displayed on the PC’s display screen. What would be even
more disturbing and likely to make the PC unusable to the
user, is the fact that the new data image would have different
software and data files from the original data image. Thus,
it is the data image that makes a user’s PC the user’s
“Personal Computer,” and it is the most valuable and essen-
tially the only irreplaceable component of the PC.

The conventional PC is “governed” by the contents of its
hard disk, and therefore the limits of the installed software
become the limits of the user. Once the user’s needs change,
or grow beyond the capabilities of the installed software, the
user has to deal with upgrading or installing a new OS or
application software, a costly, time consuming, and fre-
quently aggravating process even for a professional.
Moreover, in environments such as offices within large
companies or firms, this problem is compounded because
the hard drive on each individual PC needs to be accessed in
order to perform an upgrade. In addition, such upgrades may
cause some existing software not to work properly, in effect
corrupting the previously stable data image.

There are several computer architecture models that
attempt to solve the above problem. These architecture
models and their respective disadvantages are described
below.

Network Computer: A network computer (NC) is a light-
weight computer with a simple built-in operating system.
After booting, it connects to a remote computer for file
system access. Software programs reside on the remote
computer. Once invoked, they are downloaded to the NC
where they execute. The applications are typically based on
Java or JavaScript. The problems with an NC are that
existing applications have to be reengineered for this
platform, and an NC has limited capability to perform
computing operations when not connected to the network. If
the software on the NC is badly corrupted, it may not be able
to boot or access the network and therefore the NC will not
be functional. Thus well functioning local software is
required for operation. Further, NCs have no notion of
providing a remote image to a local computer transparently
to the operating system executing on the local computer.

Thin Client: The local computer, termed the thin client, is
used mainly for display and user input. Applications execute
on a server and the thin client opens a window to the server
to interact with the applications. For the thin client to work,
a continuous connection from the thin client to the server is
needed. A thin client is typically running on a standard
computer; however, the thin client technology does not
provide any means for remotely administering or upgrading
of the computer’s software. In addition, thin client technol-
ogy requires that the data files (such as Word documents) be
manipulated on the server, which requires that they not be
encrypted during such manipulation. Also, well functioning
local software is required for operation. Thin clients are also
operating system specific.

Remote booting and Disk-less computers: Some operat-
ing systems, such as Unix, MacOS and Windows 95 allow

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 14 of 21 PagelD #: 177

US 6,598,131 B2

3

computers to boot from an image on a remote computer. This
feature is typically used for disk-less computers. However,
even if the computers have a disk drive or other persistent
storage device, it is only used as a swap space (runtime
operating system scratch space), and the contents do not
persist across boot sessions. Remote booting and diskless
computers do not work off line.

Remote File System Technologies: They allow mounting
of a remote file system to a local computer (e.g., NFS).
Remote file systems can be provided by a remote computer
or by a remote network disk. These technologies allow a
computer to access data and programs stored on remote
server(s). However, system software built into the operating
system is required. Remote file technologies do not allow
remote administration of the computer. They also require
functioning software on the computer. In addition, remote
file system technologies do not work off line whilst the
present invention does work off line.

Automatic file propagation: Software tools such as Unix’s
rdist, allow files to be synchronized across networked com-
puters; however, such tools are operating system and file
system specific, and require a functioning operating system
for them to work.

What is desired is a system and/or method that overcomes
these and other disadvantages of conventional computers
and computer architectures.

SUMMARY OF THE INVENTION

The present invention provides a persistent storage device
data image management system, or data image management
system (DIMS) for short, that is able to solve the above
described problems that users encounter when upgrading
and/or maintaining their computers.

According to the present invention, the DIMS completely
de-couples a persistent storage device data image “seen” by
the computer from a persistent storage device attached to the
computer (also referred to as the local persistent storage
device (LPSD)). The DIMS includes a local data image
manager (LDIM), which is required to be installed (either by
the manufacturer, the distributor, a user, or a technician) on
the user’s computer, a remote data image manager (RDIM),
and a remote persistent storage device (RPSD). The LDIM
communicates with the RDIM through a direct communi-
cation link or through a communication network (e.g., a
local arca network, a wide are network, the Internet, the
public switched telephone network, a wireless network, etc).
The RDIM can store data on and retrieve data from the
RPSD.

In an environment where an LDIM has been installed in
a computer having a “local” persistent storage device
(LPSD), the DIMS allows for the storing of the LPSD’s data
image on the RPSD, with the LPSD serving as a persistent,
consistent cache of the data image. The data image stored on
the RPSD is referred to as the “master data image” and the
data image cached on the LPSD is referred to as the “local
data image” or “cached data image.” In general, there is no
requirement that the LPSD and the RPSD be of the same
type. For instance, the LPSD could be a DiskOnChip and the
RPSD could be a hard disk. Also, the RPSD may be a
specialized smart device rather than being installed in a
general purpose computer.

The purpose of the LDIM is to imitate the LPSD. That is,
the LDIM, from the computer’s perspective, appears exactly
like the LPSD. More specifically, the LDIM functions to
intercept and process requests that are intended to be
received by the LPSD, which may not be in fact installed in

10

15

20

25

30

35

40

45

50

55

60

65

4

the computer. Common are read/write requests specifying an
address (for example, in the case where the LPSD includes
a hard disk, the read/write requests specify a sector of the
hard disk).

Upon intercepting a read request, which specifies an
address, the LDIM is programmed to determine whether the
portion of the cached data image that is stored at the
specified address is up-to-date (i.e., whether the portion of
the cached data image reflects the latest changes made to the
master data image). In one embodiment, this feature is
implemented by having the LDIM request a “modified-list”
from the RDIM each time the LDIM is powered on and
(optionally) to have the RDIM provide to the LDIM updates
to the modified list whenever a modification to the master
data image occurs. The “modified-list” is a list of all the
“parts” or “portions” of the master data image that have been
modified since the last time the LDIM was informed of
modifications to the master data image. (For example, if the
master data image is a data image from a hard disk, the list
of parts could be a list of the disk’s sectors.) Thus, if the
LDIM receives a read request specifying an address that is
on the modified list, the LDIM will know that the portion of
the cached data image stored at the specified address is not
up-to-date.

If the LDIM determines that the cached data image has the
most up to date version of the requested data, then the LDIM
(1) retrieves the requested data from the LPSD by issuing a
read request to the LPSD and (2) passes the retrieved data
back to the component or device from which it received the
request. If the cached data image does not have the most
update version of the requested data, then it must be stored
on the RPSD (i.e., the master data image). In this case, the
LDIM transmits to the RDIM a read request message, which
may include the address specified in the intercepted read
request. Upon receiving the read request message, the RDIM
locates and reads the requested data from the master data
image stored on the RPSD and then transmits the data back
to the LDIM.

Upon intercepting a write request, the LDIM may write
the data to the LPSD, if there is one, and transmits the data
to the RDIM so that the RDIM can update the master data
image thereby ensuring that the master data image is up to
date. The LDIM may either transmit the data to the RDIM
substantially concurrently with writing the data to the LPSD
or wait until some later time (e.g., if the computer is not
currently connected to the network or if the network is
heavily loaded).

On requests other than read or write request, such as PND
(Program Non Data request for IDE hard disks), the LDIM
returns a response as required by the standard protocol for
communicating with the LPSD.

It is contemplated that in some embodiments there will be
no LPSD. In this case, there is no cache as described above.
Instead, all read/write requests for data that are received by
the LDIM are transmitted to the RDIM. In the case of a read
request, the RDIM retrieves the requested data and transmits
the data back to the LDIM. In this manner, a user of the
computer has access to his or her personalized data image
even when the computer is not equipped with a local hard
disk or other persistent storage device. It is also contem-
plated that to gain the greatest benefit from the invention the
computer in which an LDIM is installed should, as often as
is possible, be connected to a network so that the LDIM can
communicate with an RDIM.

From now, and without limiting the scope of the
invention, the invention and its benefits will be described

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 15 of 21 PagelD #: 178

US 6,598,131 B2

5

with respect to the particular embodiment where the LPSD
is a hard disk. Once the DIMS is in place, the user need not
concern him or herself with the task of upgrading his or her
operating systems, application programs, data files, etc.,
following setting the appropriate agreements with the orga-
nization in charge of managing the master data images on
RPSDs. This is because software patches and upgrades can
be first performed on the master data image by an experi-
enced system administrator. After the system administrator
performs the upgrade on the master data image, the DIMS
transparently ensures that these patches and upgrades are
propagated to the local hard disk, as described above.
Similarly, as described above, the DIMS automatically
backs up all data files that are stored on the local hard disk
that have been modified. This is accomplished by the LDIM
transmitting the modified files (or sectors) to the RDIM so
that the RDIM can update the master data image. In this
manner, the master data image is kept up to date.

Additionally, the DIMS can cache multiple master data
images on the local hard disk. This is advantageous where
the computer has more than one user and each user has his
or her own personalized data image. The DIMS uses a
standard coherent caching algorithm (such as described in
the standard textbook: Almasi and Gottlieb, Parallel
Computing, 2" edition, 1994, the entire contents of which
are incorporated herein by this reference.) and implementa-
tion to store the cached data images and maintain their
coherency with the corresponding master data image. When
the LDIM is unable to communicate with the RDIM, the
computer in which it is installed can still operate to the
extent that the required software and data is cached on the
local on the local hard disk.

Preferably, the DIMS provides this functionality below
the operating system and all of its components (including
device drivers) and BIOS routines specific to the hardware
of the computer. Thus, the DIMS is completely transparent
to the operating system and all applications of the computer.
This allows the DIMS to be independent of any operating
system or software installed on the computer. At the same
time, it has the ability to provide the computer with any type
of operating system compatible with the computer’s
hardware, software, and other data.

This enabling technology provides a rich gamut of func-
tionality that completely changes the way computers are
utilized. A user can use any “hardware compatible” com-
puter as their “Personal Computer,” as the new computer
transparently, without the user’s intervention, obtains over a
network only those parts of the user’s data image needed for
the current execution, with the other parts following later.
For instance if the user wants to start execution by editing a
document and then at a later point in time create and send an
e-mail, a word processor will be downloaded before the
e-mail program. A user’s computer can be replaced by a new
one with the ease of “plug and play,” retaining all the user’s
desired previous software, data, and settings. The user is
presented with practically unlimited disk space, as the size
of the master data image is not constrained by the size of a
local disk.

The software and data cached on the local disk provide
instantaneously for the normal needs of the user, thus
minimizing the network traffic between the location where
the master copy is stored and an individual computer. As the
user’s software does not execute remotely, data files are kept
private through encryption—which can be done even on the
local hard disk, with LDIM encrypting and decrypting the
data as needed.

The DIMS is easy to integrate into existing platforms,
provides, for the first time, a complete automated manage-

10

15

20

25

30

35

40

45

50

55

60

65

6

ment and administration capability in LANs and over the
Internet, while maintaining fully the rich computer func-
tionality. The DIMS creates the following benefits: increased
user satisfaction and productivity, removal of the need for
users to spend time on administration or wasting time
waiting for somebody to repair the damage they may have
caused to their local disk contents, and in general tremen-
dous savings in both the explicit and implicit parts of total
cost of ownership.

In today’s computers, to access a hard disk, the following
sequence of steps are performed:

1. An application wishing to read or write a file issues a

request to an operating system API for such action.

2. The operating system checks if the request can be
serviced from its file cache, if such cache is maintained.

3. On a miss, or write through, the operating system
directs the request to an appropriate device driver for
the physical device to which the request was made.

4. Optionally, the device driver may issue the request to
the computer’s BIOS.

5. The device driver (or BIOS) issues the request to a disk
adapter, which is a component typically installed on the
motherboard of the PC.

6. The disk adapter uses a physical connection to send the
request to the controller of the local hard disk.

It is an object of the present invention to implement the
LDIM to intercept the request from the disk adapter so that
the controller of the local persistent storage device will not
receive it. Alternatively, it is an object of the invention to
implement the LDIM to intercept the request from the
device driver (or BIOS) so that the disk adapter does not
receive it.

There are a number of ways in which this interception can
be done including system management mode, a PC card,
building it with new chips on the motherboard or the
persistent storage device, or building the functionality into
the adapter chip. The Alternative Embodiments section of
this document elaborates on these embodiments.

It is another object of the present invention to allow the
DIMS to encrypt writes and decrypt reads using a password,
a pass-phrase, or a key supplied by system software or the
user. As commonly done, the key itself could be kept
encrypted and only be decrypted after a password or a
pass-phrase are supplied. The obvious advantage of encryp-
tion is to secure the local data, the remote data, and the data
transferred over the network. Furthermore, this functionality
is transparent to the user, the operating system, and software
applications.

It is another object of the present invention to allow the
DIMS to work with any operating system presently available
on the market (including DOS, Windows 98/NT/2000/ME,
Unix, Novell, 0S/2, BeOS) or any future operating system
that supports any of the standard persistent storage device
interfaces.

It is another object of the present invention to allow the
DIMS to work with any standard hard drive interface.

It is another object of the present invention to make the
above functionalities available for any existing or future
computer hardware that uses any of the current or future
persistent storage device interfaces.

It is another object of the present invention to provide a
transparent mechanism for upgrading software and hard-
ware drivers by means of pulling changes as needed when
the computer is connected to the network. This is as opposed
to current operating system specific push mechanisms, such
as Unix’s rdist.

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 16 of 21 PagelD #: 179

US 6,598,131 B2

7

It is another object of the present invention to provide a
mechanism for allowing users to roam from computer to
computer and receive their personal operating system, per-
sonalization customizations, applications, and data files, no
matter what operating system, applications, and data files
were previously being used on that computer.

It is another object of the present invention to provide a
mechanism allowing the DIMS to transparently present a
large amount of storage space (bound only by the addressing
size limitations), regardless of the amount of space available
on the local physical persistent storage device.

Still other objects and advantages of the invention will in
part be obvious and will in part be apparent from the
specification.

Further features and advantages of the present invention,
as well as the structure and operation of various embodi-
ments of the present invention, are described in detail below
with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
herein and form part of the specification, illustrate various
embodiments of the present invention and, together with the
description, further serve to explain the principles of the
invention and to enable a person skilled in the pertinent art
to make and use the invention. In the drawings, like refer-
ence numbers indicate identical or functionally similar ele-
ments. Additionally, the left-most digit(s) of a reference
number identifies the drawing in which the reference num-
ber first appears.

FIG. 1 depicts a functional block diagram of a standard
PC indicating the connection and interaction of a typical
persistent storage device;

FIG. 2 depicts a computer and a data image management
system (DIMS), according to one embodiment, for improv-
ing the operation of the computer.

FIG. 3 depicts a schematic of a PC with an installed local
data image manager (LDIM).

FIG. 4 depicts a block diagram of the components of an
exemplary LDIM in accordance with the present invention;

FIG. 5 depicts a flowchart of the LDIM control program;

FIG. 6 depicts a flowchart of the PI (PIO In) commands
executed by a computer;

FIG. 7 depicts a flowchart of the PO (PIO Out) commands
executed by a computer; and

FIG. 8 depicts a flowchart of the ND (Non Data) com-
mands executed by a computer.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The following detailed description of an embodiment of
the invention is of the best presently contemplated mode of
carrying out the invention. This description is not to be taken
in a limiting sense, but is made merely for illustrating the
general principles of the invention.

FIG. 1 depicts a functional block diagram of a conven-
tional computer 100 (also referred to as “PC”). As shown,
computer 100 includes an operating system (OS) 102, a
basic input/out system (BIOS) 104; a loader 106, a variety
of software programs 108 and a local persistent storage
device (e.g., hard disk) 110. As the figure exemplifies,
operating system 102, BIOS 104, and loader 106 (through
the BIOS) access storage device 110 through a standard
interface/protocol 112 (e.g., the ATA/IDE interface/
protocol). Conventionally, applications programs 108 do not

10

15

20

25

30

35

40

45

50

55

60

65

8

access storage device 100 directly; application programs 108
rely on services provided by operating system 102 to access
data stored on storage device 110.

FIG. 2 depicts computer 100 and a data image manage-
ment system (DIMS), according to one embodiment, for
improving the operation of computer 100. The DIMS is a
client/server system, and thus includes a client 202 and a
server 204. Client 202 is referred to as the “local data image
manager” (LDIM) and server 204 is referred to as the
“remote data image manager” (RDIM). The DIMS also
includes a persistent storage device (PSD) 206 that can be
read from and written to by RDIM 204. PSD 206 is referred
to herein as “remote PSD 206” or “RPSD 206 because it is
“remotely” located from computer 100. That is, RPSD 206
is not directly coupled to computer 100.

As shown in FIG. 2, LDIM 202 is installed in computer
100. More specifically, from a functional point of view,
LDIM 202 is installed between storage device 110 and OS
102, and BIOS 104. LDIM 202, as shown in FIG. 2,
communicates with OS 102 and BIOS 104 using standard
interface 112; the same interface used by OS 102 and BIOS
104 to communicate with storage device 106. Additionally,
LDIM 202 may be connected to storage device 110 and can
read data from and write data to storage device 110 using
standard interface 112. To OS 102 and BIOS 104, LDIM 202
“pretends” that it is storage device 110. Thus, LDIM 202 is
completely transparent to OS 102 and BIOS 104.

LDIM 202 and RDIM 204 communicate with each other
through a direct communication link or network 210 (e.g., a
local arca network, a wide are network, the Internet, the
public switched telephone network, a wireless network,
etc.).

As described in the Summary of Invention section, the
DIMS allows for the storing of a data image on RPSD 206
with storage device 100 serving as a persistent, consistent
cache of the data image. A data image stored on RPSD 206
is referred to as a “master data image” and a data image
stored on storage device 110 is referred to as a “cached data
image.” RPSD 206 can be configured to store more than one
master data image and storage device 110 can be used to
cache more than one master data image.

Optionally, in one embodiment, LDIM 202 includes a
“mini-booter” software program (not shown). In this
embodiment, when computer 100 is powered on, LDIM 202
“forces” the “mini-booter” into computer 100’s CPU (See
FIG. 3). This is done by emulating a disk with the mini-
booter installed as a loader. The mini-booter functions to
authenticate the user (i.e., it may perform usemname/
password verification). Additionally, if the DIMS has more
than one RPSD 206, the user is prompted to select one.
Preferably, the user will select the RPSD 206 that stores the
master data image(s) that “belong(s)” to the user. After the
mini-booter receives the selection from the user, the mini-
booter communicates with LDIM 202 (this communication
can use custom IDE commands, or reads and writes to
reserved sectors) to request that LDIM 202 contact the
RDIM 204 associated with the selected RPSD 206 to
determine the list of available master data images for this
user. (If the server cannot be contacted, some number of
most recent user names, passwords, and images are cached
on the LDIM 202, assuming a cache exists, and only those
users can gain access). The mini-booter displays the list of
available master data images and prompts the user to select
one. The mini-booter communicates the selection to LDIM
202 and then either reboots the computer or resets the
BIOS’s disk geometry table to the geometry of the selected

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 17 of 21 PagelD #: 180

US 6,598,131 B2

9

master data image. The latter case is preferred if the BIOS
supports such a feature. In the former case, LDIM 202
emulates the selected image including the geometry of the
image.

The mini-booter may also provide an interface for con-
figuring and maintaining LDIM 202. Options such as
whether to use Dynamic Host Configuration Protocol
(DHCP) or a static IP address can be set from this interface.

As is evident from FIG. 2, LDIM 202 functions to
intercept requests (for example, read/write requests) that are
intended to be received by storage device 110. After a master
data image is selected, upon intercepting a read request,
LDIM 202 is programmed to determine whether the cached
data image or the selected master data image has the most up
to date version of the requested data. In one embodiment,
this feature is implemented by having LDIM 202 request a
“modified list” from RDIM 204 each time LDIM 202 is
powered on and (optionally) to have RDIM 204 provide to
LDIM 202 updates to the modified list whenever a modifi-
cation to the master data image occurs. The “modified list”
is a list of all the sectors of the master data image that have
been modified since the last time LDIM 202 was informed
of modifications to the master data image. Thus, if LDIM
202 receives a read request for a sector that is on the
modified list, LDIM 202 will know that the cached data
image (i.e., storage device 110) does not have the most up
to date version of the data.

If LDIM 202 determines that the cached data image has
the most up to date version of the requested data, then LDIM
202 retrieves the requested data from storage device 110 and
passes the data back to the component or device from which
it received the request. If the cached data image does not
have the most update version, then it must be stored on the
RPSD 206 (i.c., the selected master data image). In this case,
LDIM 202 transmits a read request to RDIM 204. Upon
receiving the read request, RDIM 204 locates and reads the
requested data from the selected master data image stored on
RPSD 206 and then transmits the data back to LDIM 202.
Upon intercepting a write request, LDIM 202 is pro-
grammed to write the data to storage device 110 and to
transmit the data to RDIM 204 so that RDIM 204 can update
the selected master data image thereby ensuring that the
master data image is up to date. LDIM 202 may either
transmit the data to RDIM 204 substantially concurrently
with writing the data to storage device 110 or at some later
time (e.g., when network traffic is low).

It is envisioned that a user who uses the DIMS would
initially copy the data image stored on storage device 110
onto RPSD 206 and then always select that image as the
master data image. Thus, in most cases the selected master
data image on RPSD 206 would initially be identical to the
cached data image on storage device 110. Of course, a small
of amount of space would need to be set aside on storage
device 110 for cache data and any other data needed, such
as encrypted keys. It is further envisioned that the user
would then allow a professional system administrator to
make updates to the master data image using RDIM 204.

The various data images stored on RPSD 206 may not
require each its own fully dedicated storage space. For
instance, if two data images contain the same word
processor, that word processor may be stored only once.
RDIM 204 will deliver the word processor as needed to both
of the cashed data images.

RDIM 204 preferably includes image manipulation tools.
The image manipulation tools allow system administrators
to manipulate master data images stored on RPSD 206. For

10

15

20

25

30

35

40

45

50

55

60

65

10

example, an administrator could create new images, copy
images and delete images. In addition, it is advantageous to
allow administrators to manipulate the contents of a master
data image stored on RPSD 206. For example, software
installation, registry manipulation, and operating system
upgrades or restructuring can be performed on a master data
image. The image manipulation tools allow centralized
administration and upgrading and/or restructuring of oper-
ating systems, applications, and user data.

These updates to the master data image would be auto-
matically propagated to the cached data image by virtue of
the fact that LDIM 202 is made aware of the updates. As
explained above, when LDIM 202 is powered on it requests
the modified list from RDIM 204 and RDIM 204 sends to
LDIM 202 updated information to be added to the modified
list.

The DIMS can provide functionality to computer 100
even when storage device 110 is not present in computer
100. In this situation, LDIM 202 merely forwards all read/
write requests to the appropriate RDIM 204. However, to
minimize the network traffic and delays, using storage
device 110 as a cache is necessary. When storage device 110
is used as a cache, the vast majority of requested blocks (this
is likely to include the OS, recently used application, and
data files) will most likely be stored in the cache, thus, no
network traffic is needed. It should also be noted that the
propagation of write requests from LDIM 202 to RDIM 204
for the purpose of updating the master data image can be
timed to best utilize the network bandwidth. As an additional
feature, since LDIM 202 receives all read requests, LDIM
202 can monitor software usage. That is, LDIM 202 can
“meter” the use of any particular software program or data
file and gather statistics on the usage patterns of various
software programs.

Referring now to FIG. 3, there is shown a hardware
diagram of computer 100 and LDIM 202 according to one
embodiment of the invention. In a typical computer, a ribbon
connects a disk adapter 304 on the computer’s motherboard
306 to a storage device (e.g., hard disk). However, in this
embodiment of the invention, LDIM 202 comprises an
LDIM card 308 (LDIM card 308 is a standard form card
similar to an Ethernet card) that is connected to disk adapter
304 by a ribbon cable 302(a) and connected to storage
device 110 by another ribbon cable 302(b), which is similar
to ribbon cable 302(a). That is, in this embodiment of the
invention, storage device 110 is not connected to disk
adapter 304 as is the case in conventional computers. LDIM
card 308 is equipped with an embedded processor, logic
circuits, and memory 310 for enabling LDIM 202 to perform
its functions.

To disk adapter 304 and storage device 110, LDIM 202
presents standard connectors and hardware/software inter-
faces 312, and therefore, LDIM 202 is completely inter-
operable with standard computer hardware and interfaces.
To disk adapter 304, LDIM 202 “pretends™ that it is storage
device 110; to storage device 110, LDIM 202 “pretends” it
is disk adapter 304. As the CPU 302 and software running
on the computer 100 (including the OS) are not “aware” of
this replacement, reads and writes that are transmitted by the
disk adapter 304 are intercepted and processed by LDIM
202 as described above.

There is no need to modify the existing motherboard bus
technology or the CPU 302 to disk drive adapter interface
303 or the adapter to the disk drive’s controller interface:
disk adapter 304 can use any protocol to interface with
storage device 110 and/or LDIM 202, for example including
ST506, SCSI, IDE, ATA, ATA-2-5, EIDE, ESDI.

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 18 of 21 PagelD #: 181

US 6,598,131 B2

11

Furthermore, disk adapter 304 can be coupled to the CPU
302 using a variety of different buses, for example, PCI,
ISA, VESA LB, EISA, and MCA.

The particular embodiment of LDIM 202 that is described
below implements the IDE protocol and consists of PIO
modes O through 2. It is straightforward to implement other
modes of operation by implementing their respective speci-
fications. This embodiment is concerned with the method of
re-directing the host’s reads and writes. As such, the
embodiment does not implement multi sector reads and
writes. It is straightforward to implement the remainder of
the specification and implementing PIO modes O through 2
does conform to the specification. Note that PI and PO
commands include (i.e., specify) a sector.

FIG. 4 depicts a schematic of LDIM 202, which is for
connecting to a computer’s primary IDE interface 420, via
a standard 40 pin IDE connector 440, and to a network
interface 460. Element 401 is a 40 pin IDE flat cable
connector. Element 402 is a network interface, which
enables software executed by CPU 408 to communicate with
other programs (e.g., RDIM 204 programs) over a network
or communication link.

Element 403 is a dual ported RAM. In the illustrated
embodiment, the dual ported RAM captures the data written
by CPU 302 via its adapter 304 to the IDE interface. In
particular, dual ported RAM 403 stores the data written onto
the IDE Command register block (Feature Register, Sector
Count, Sector/Cylinder/Drive-Head Registers and Com-
mand register), and Control Register Block (Control
Register). Since element 403 is a dual ported RAM, CPU
408 can access its contents at any time thereby reading the
parameters written by CPU 302 to the IDE drive.

Element 404 is a second dual ported RAM. It stores the
Error and Status registers. It is written by CPU 408 and can
be accessed by CPU 302 via adapter 304.

Element 405 is a buffer that stores data exchanged
between adapter 304 and LDIM 202.

A Control Unit 406 is provided for controlling the dual
ported RAMs and the buffer to implement the IDE protocol.

LDIM 202 also includes internal RAM 409 that can
potentially be used by the software module that implements
the standard caching algorithm as a fast buffer cache and for
storing that software module and other modules. A flash
RAM 407 stores an initial control program loaded by the
CPU 408, as well as the control program for control unit
406.

Finally, an IDE adapter 410 is connected to the CPU 408
and to the (optional) secondary storage device 411.

The elements 403, 404, 405, 406 can be implemented with
a Xilinx XC4000 FPGA, or with a specialized ASIC. Ele-
ment 408 can be any CPU, for example an Intel 80486.

In a preferred embodiment of the present invention, the
objectives are achieved by connecting the aforementioned
LDIM 202 to the standard IDE connector 420 of the primary
IDE interface of computer 100. Preferably, a new Ethernet
connector 460 is added in an empty PCI slot of computer
100, and the Ethernet connector 460 is linked with a cable
to network interface 402.

Because IDE adapter 304 reads from the disk through the
IDE connector 420, and since LDIM 202 is connected to
IDE connector 420, if LDIM 202 correctly follows the IDE
protocol, it appears as a standard IDE disk drive. Thus the
present invention achieves its objectives without requiring
the modification, removal or replacement of the system IDE
adapter or the use of specialized device drivers or BIOS, or
additional software.

Attaching LDIM 202 in accordance with the present
invention to IDE connector 420 allows LDIM 202 to moni-

10

15

20

25

30

35

40

45

50

55

60

65

12

tor all the information being transmitted by CPU 302 to the
disk drive 110. This includes all the commands because the
set of registers implemented with the dual ported RAMs is
identical to the set of registers of disk drive 110.

The flowcharts depicted in FIGS. 5-8 illustrate an
example of disk activity that occurs when an LDIM 202 in
accordance with the present invention is installed in a
computer. The flowchart depicted in FIG. § illustrates the
process performed by the LDIM 202 software (not shown)
that is stored in flash RAM 407 and that functions to
simulate any IDE command.

As depicted in FIG. 5, no action occurs until CPU 302
writes a command to the command register (not shown) that
resides in dual port RAM 403. When this occurs, control unit
406 generates an interrupt to CPU 408. An interrupt service
routine immediately reads the command from the command
register, and selects either a PI, PO, or ND handling module
depending on the command class of the command written
into the command register (PI, PO, or ND).

When a PI command is executed (i.e., CPU 302 is seeking
to retrieve a data sector), the PI handling module sets the
BSY bit, reads the parameters from the dual ported RAM
403, and then fetches the sector that is being requested by
CPU 302. The sector is either fetched from the cache 110 or
from an RPSD 206. As described above, the sector is fetched
from cache 110 if the data stored there is up-to-date,
otherwise the sector is fetched from RPSD 206 (i.e., the PI
handling module sends a read request, which indicates the
requested sector, to RDIM 204, RDIM 204 retrieves the
requested sector from RPSD 206, and RDIM 204 sends the
requested data sector back to the PI handling module). After
the data sector is fetched from either local disk 110 or an
RPSD 206, it is stored in buffer 405, dual ported RAM 404
is updated with the new status information, the DRQ bit is
set, the BSY bit is cleared and, if interrupts are enabled, an
interrupt to CPU 302 is generated. The PI handling module
then waits until CPU 302 reads the status register. When this
happens, the IRQ line is de-asserted, and the PI handling
module waits until the contents of buffer 405 have been
completely read by CPU 302. Then the PI handling module
clears the DRQ bit and control passes back to the beginning.

When a PO command is executed (i.e., CPU 302 is
seeking to write data to a sector), the PO handling module
first sets the DRQ bit and then waits until buffer 405 is full.
The handling module then clears the DRQ bit and sets the
BSY bit, then reads the parameters from the dual ported
RAM 403, and finally writes the sector specified in the PO
command. The actual writing is handled by the software
module that implements the above mentioned caching
algorithm, which may perform the write to the fast buffer
cache, the local persistent storage device 110, or to RDIM
204 or to any combination thereof. After the sector is
written, the status is written and the BSY bit is cleared. At
this point the IRQ line is asserted, and the handling module
waits until CPU 302 reads the status register. Then the IRQ
line is cleared and the process goes back to the beginning of
the control program main loop.

When an ND command is executed, the ND handling
module sets the BSY bit, reads the parameters from the dual
ported RAM 403, and then executes the command. The
status is then written, the BSY bit is reset, and the IRQ line
is asserted. The handling module waits until the status
register is read by CPU 302, and then clears the IRQ line.
The process then goes back to the beginning. When a
non-valid command is detected, the handling module writes
the correct error value to the error register and the process
returns to the beginning of the main loop.

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 19 of 21 PagelD #: 182

US 6,598,131 B2

13

FIG. 6 depicts the flowchart of the PI commands executed
by CPU 302. The parameters are written onto the command
block registers and the command op-code is written onto the
command register. The computer’s operating system then
waits for an interrupt. When LDIM 202 asserts the IRQ line,
CPU 302 reads the status register (which makes LDIM 202
de-assert the IRQ line), and reads the buffer.

FIG. 7 depicts the flowchart of the PO commands
executed by CPU 302. The parameters are written to the
command block registers and the command op-code is
written to the command register. Then the operating system
102 waits for the DRQ bit on the status register to be set.
When LDIM 202 does this, the operating system 102 writes
the buffer and waits for an interrupt. When LDIM 202
asserts the IRQ line, CPU 302 reads the status register
(which makes LDIM 202 de-assert the IRQ line).

FIG. 8 depicts the flowchart of the ND commands
executed by CPU 302. The parameters are written to the
command block registers and the command op-code is
written to the command register. Then the operating system
waits for an interrupt. When LDIM 202 asserts the IRQ line,
CPU 302 reads the status register (which makes LDIM 202
de-assert the IRQ line).

Although product names of several specific circuit ele-
ments used in preferred embodiments of the present inven-
tion have been identified herein, it is recognized that any
circuit element chip which performs functions similar or
equivalent to the components described here may be sub-
stituted with no change in the functionality of the invention.
The present invention is therefore not limited to the specific
circuit elements identified herein, and changes in such
circuit elements may be made to accommodate such con-
sideration as cost reduction or other reasons.

Alternative Embodiments of the Invention:

While the invention has been particularly shown and
described with reference to preferred embodiments thereof,
it will be understood by those skilled in the art that the
foregoing and other changes in form or detail may be made
therein without departing from the scope of the invention.

There are a number of ways to intercept the read/write
requests that are intended to be received by a persistent
storage device and to implement LDIM 202. For example,
on Intel 386 and above processors, the system management
mode can be employed to redirect communication to/from
disk adapter 304 to a specialized program running on CPU
302. In this case, either the ports for accessing adapter 304
need to generate system management interrupts or adapter
304 needs to be modified to generate system management
interrupts after some quantum of the request has been made
(e.g., for a write of a single sector, after the 512 bytes of data
have been collected by the adapter). In the latter case,
adapter 304 must be able to handle requests for disk accesses
normally, for example when the system management mode
code needs to access the persistent storage device 110.

Another approach is to add the interception and LDIM
implementation on the motherboard 306 itself; the mother-
board 306 would be augmented to route requests for the
adapter to a physical unit (not shown) on the motherboard
that would handle the interception and implement the LDIM
functionality.

Another approach is to add the interception and imple-
mentation of the LDIM onto the physical persistent storage
device 110. This functionality would be added before the
device’s controller (not shown) handles requests.

Another approach is to augment the adapter 304 on the
motherboard 306 to perform the interception.

The approach employed in the embodiment described in
detail above is to insert a card in between the cable con-
necting an x86 motherboard 306 to an IDE hard disk 110.
This embodiment should in no way be seen as limiting the
scope of the present invention to this type of embodiment or
to these types of components.

10

15

20

25

30

35

40

45

50

55

60

65

14

It should be noted that when the computer 100 already has
a network interface card (NIC), the LDIM need not have its
own NIC. That is, the LDIM can be connected to the existing
NIC and provide routing and Network Address Translation
(NAT) for the computer. The advantage of this configuration
is that the computer does not require an additional IP
(Internet Protocol) address. It is also possible to use a single
network connection and single IP address for both the LDIM
and the computer. In this case, internal logic would deter-
mine whether a network packet was directed to the LDIM,
or whether to pass the packet through to the computer.
Benefits of the Invention:

Because the DIMS is capable of updating the cached data
image “at its convenience,” that is in a “pull” rather than a
“push” mode, the DIMS allows all of a computer’s software
(operating system, software applications, and other data) to
be installed and maintained at a remote site, by modifying
the data image stored there. This gives users an unprec-
edented benefit as it requires no support from the local
operating system or application software.

By performing the updates pro-actively and below the
operating system level, substantial performance and main-
tainability benefits are achieved in a platform independent
manner. This includes maintaining the software so its most
current version is available, and easy installation of addi-
tional software.

Frequently, the contents of various data images partially
overlaps, this is true for instance for operating system files
for images in which the same operating system is installed.
In this case, the common parts of a set of images may be
stored only once, and then upgrades and modification to the
common parts may be more efficient

In contrast to existing vendor centric solutions (thus of
limited capability solutions) the present invention provides
a comprehensive solution to remotely install and adminis-
trate any operating system on any computer (as long as the
operating system and the host hardware are compatible).
This results in a dramatic reduction in the total cost of
computer ownership.

A computer can boot a different, up-to-date, or custom-
ized version of the operating system and software each time
it boots. For instance, a user following an agreement with his
Internet Service Provider (ISP), may at each boot time get a
different version of trial software, updated operating systems
components, or new advertising images as wallpaper.

The user may also transparently use Application Service
Providers (ASPs). In this case, his or her master data image
will include the ASP’s application software, which he will
access as if it were resident on a local persistent storage
device. The ASP can also “unlock” and “lock”™ access to such
application software at will, adding the software to the
master data image, or removing the software from it. In this
way, the ASP can easily rent and sell software applications.

The physical media used to remotely store the master data
images may be stored at highly available, reliable servers
where disk mirroring techniques such as RAID can be used
to make the data fault tolerant.

If a computer becomes non-functional (including the case
when it cannot even boot) because of corruption of its
operating system files, a correct image can be reloaded from
a master data image, relying on the direct network connec-
tion between the LDIM and the RDIM.

When a user has difficulties or does not understand the
behavior of the operating system or applications, technical
support can evaluate the situation remotely and help the user
(and if necessary repair the configuration), as it has access
to the master data image.

Because the physical data image is stored remotely,
operating systems, applications and other data may be
updated on the remote persistent storage device(s) by Infor-
mation Technology (IT) professionals (through high-level
interfaces such as NTFS).

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 20 of 21 PagelD #: 183

US 6,598,131 B2

15

Also, because the physical data image is stored remotely,
remote servers hosting the remote persistent storage devices
may automatically update software, drivers, etc., by inter-
acting with the appropriate software vendors.

A computer including a LDIM can be used by multiple
users at different times, with each user’s master data image
being transparently provided to him. Also, a user can choose
which master data image to use.

As the LDIM can include encryption/decryption
capability, the images can be stored encrypted on the remote
persistent storage device and on the local persistent device,
if any. That is, before the LDIM performs a write, the LDIM
encrypts the data to be written and then writes the encrypted
data. Similarly, when the LDIM process a read request, it
first reads the data (either from the cached data image or
from the master data image) and then decrypts the data
before passing the data to the CPU of the computer.

It will thus be seen that the objects set forth above, among
those made apparent from the preceding description, are
efficiently attained and, since certain changes may be made
in carrying out the above methods and in the devices as set
forth without departing from the spirit and scope of the
invention, it is intended that all matter contained in the
above description and shown in the accompanying drawings
shall be interpreted as illustrative and not in a limiting sense.
Thus, the breadth and scope of the present invention should
be defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A computer, comprising:

a processing unit;

a local persistent storage device (LPSD) comprising a

non-volatile data storage medium; and

a local data image manager (LDIM) that emulates the

local persistent storage device, wherein

the LDIM is coupled between the processing unit and
the LPSD,

the LDIM comprises a network interface that enables
the LDIM to send messages to and receive messages
from a remote data image manager (RDIM) that is
located remotely from the computer and that can
access a remote persistent storage device (RPSD),

the processing unit is operable to request that data be
stored in a non-volatile storage medium,

the LDIM is configured to receive the data from the
processing unit, and

the LDIM is operable to (a) issue a write request and
transmit the data to the LPSD so that the LPSD will
store the data on the non-volatile storage medium
and (b) transmit the data to the RDIM using the
network interface after receiving the data from the
processing unit.

2. The computer of claim 1, wherein the LDIM transmits
the data to the RDIM substantially concurrently with writing
the data to the LPSD.

3. The computer of claim 1, wherein the LDIM is further
operable to store the data or a pointer to the data if the LDIM
cannot successfully transmit the data to the RDIM, thereby
enabling the LDIM to send the data to the RDIM at a later
time when the LDIM can successfully transmit the data to
the RDIM.

4. The computer of claim 1, wherein the LPSD is a hard
disk drive, the computer further comprises a disk adapter,
and the LDIM is coupled to the processing unit through the
disk adapter.

5. The computer of claim 4, wherein the LDIM comprises
a connector and the LPSD is coupled to the LDIM through
the LDIP’s connector.

6. The computer of claim 4, wherein the LDIM receives
the data directly from the disk adapter and transmits the data

10

15

20

25

30

35

40

45

50

55

60

16
to the LPSD through the LDIM connector to which the
LPSD is connected.

7. The computer of claim 1, wherein the LDIM is coupled
to the processing unit through a standard persistent storage
device interface.

8. The computer of claim 1, wherein the standard persis-
tent storage device interface is one of the ATA interface,
SCSI interface, ST-506/412 interface, ESDI interface, IDE
interface, ATAPI interface, ATA-E and EIDE interface.

9. The computer of claim 1, wherein, when the processing
unit issues a non-data request, the non-data request is
received by the LDIM and, in response to receiving the
non-data request, the LDIM returns a response to the pro-
cessing unit.

10. The computer of claim 1, further comprising a
motherboard, wherein the processing unit is installed on the
motherboard and the LDIM is connected to the motherboard
by a cable.

11. In a computer having an operating system that
receives from an application a request to store data on a local
persistent storage device (LPSD) and that is configured to
send the request and the data to a device driver for the LPSD,
with the device driver being operable to issue the request and
the data to a disk adapter or to a basic input/output system
(BIOS), a method comprising the steps of:

receiving the request and the data directly from the device

driver; and

in response to receiving the request and the data from the

device driver, performing the steps of:

issuing a write request to the LPSD; and

transmitting a write request message to a system
located remotely from the computer, wherein the
write request message includes the data and an
indication that the data should be written to a data
storage medium.

12. The method of claim 11, wherein the request issued
from the device driver includes a first address and the
message transmitted to the system located remotely from the
computer includes a second address, wherein the second
address is a function of the first address.

13. The method of claim 12, wherein the second address
is the same as the first address.

14. The method of claim 11, wherein the steps of issuing
the write request to the LPSD and transmitting the write
request message are performed substantially concurrently.

15. The method of claim 11, further comprising the steps
of:

receiving a non-data request directly from the device

driver; and

in response to receiving the non-data request, sending a

response directly back to the device driver.

16. In a computer having a device driver, wherein the
device driver receives a request to store data on a local
persistent storage device (LPSD), and wherein the device
driver is configured to issue the request to a disk adapter, and
the disk adapter is configured to send the request to a
controller of the LPSD, a method comprising the steps of:

receiving a request directly from the disk adapter, wherein

the request requests that data be written; and

in response to receiving the request, performing the steps

of:

issuing a write request to the LPSD; and

transmitting a write request message to a system
located remotely from the computer, wherein the
write request message includes the data and an
indication that the data should be written to a data
storage medium.

17. The method of claim 16, wherein the request issued
from the device driver includes a first address and the
message transmitted to the system located remotely from the

Case 1:13-cv-00440-LPS Document 6-2 Filed 03/26/13 Page 21 of 21 PagelD #: 184

US 6,598,131 B2

17

computer includes a second address, wherein the second
address is a function of the first address.

18. The method of claim 17, wherein the second address
is the same as the first address.

19. The method of claim 16, wherein the steps of issuing
the write request to the LPSD and transmitting the write
request message are performed substantially concurrently.

20. The method of claim 16, further comprising the steps
of:

receiving a non-data request directly from the device

driver; and

in response to receiving the non-data request, sending a

response directly back to the disk adapter.

21. In an environment where a device comprises a pro-
cessor and a local persistent storage device (LPSD), a
method for managing the LPSD’s data image, comprising
the steps of:

copying at least a portion of the data image;

storing the copied portion of the data image on a remote

persistent storage device (RPSD) located remotely
from the device;

receiving a request to write data to the LPSD, wherein the

request was transmitted by the processor; and

in response to receiving the request, performing the steps

of:

issuing a write request to the LPSD; and

transmitting a write request message to a system
located remotely from the computer, wherein the
message includes the data and wherein the system is
operable to write the data the RPSD.

22. The system of claim 21, wherein the LPSD is a hard
disk drive that comprises a hard disk.

23. The method of claim 21, further comprising the steps
of:

receiving a non-data request transmitted from the proces-

sor; and

in response to receiving the non-data request, sending a

response back to the processor.

24. The method of claim 21, wherein the steps of issuing
the write request to the LPSD and transmitting the write
request message are performed substantially concurrently.

25. A local data image manager, comprising:

interface means for interfacing to a persistent storage

device (PSD);

receiving means for receiving commands and data,

wherein the commands comprise read commands, write
commands, and non-data commands;

means for issuing a write command to the PSD after the

receiving means receives data and a write command;
and

means for transmitting a write request message to a

remote system located remotely from the local data
image manager after the receiving means receives data
and a write command.

26. The local data image manager of claim 25, wherein
said means for receiving said commands receives said
commands from a disk adapter.

27. The local data image manager of claim 25, wherein
said PSD is a hard disk drive that comprises a hard disk.

28. The local data image manager of claim 27, wherein
the receiving means comprises interface means for interfac-
ing with a disk adapter.

29. The local data image manager of claim 28, wherein
the interface means comprises a 40 pin IDE flat cable
connector.

30. A system, comprising:

a first circuit board; first processing means disposed on

the first circuit board;

a first local persistent storage device (LPSD) connector

operable to connect to an LPSD, the LPSD connector
being disposed on the first circuit board;

10

15

20

25

30

35

40

45

50

55

60

65

18

a second circuit board;

second processing means disposed on the second circuit
board, the second processing means being programmed
to emulate an LPSD;

a connector, disposed on the second circuit board, being
connected to the LPSD connector disposed on the first
circuit board;

transmitting means disposed on the second circuit board
for enabling the second processing means to send
messages to and receive messages from a remote
system that is located remotely from the system and
that can access a remote persistent storage device
(RPSD), and

a second LPSD connector, the second LPSD connector

being disposed on said second circuit board.

31. The system of claim 30, further comprising an LPSD,
wherein the LPSD is connected to the second LPSD con-
nector.

32. The system of claim 31, wherein the LPSD connected
to the second LPSD connector is a hard disk drive.

33. The system of claim 31, wherein the LPSD connected
to the second LPSD connector is a drive for writing data to
compact disc.

34. The system of claim 33, wherein the second process-
ing means receives read, write, and non-data commands
issued from the first processing unit.

35. The system of claim 34, wherein the second process-
ing means issues a write command to the LPSD connected
to the second LPSD connector in response to receiving a
write command issued from the first processing unit and also
transmits a write request message to the remote system in
response to receiving the write command.

36. The system of claim 35, wherein the second process-
ing means issues the write command to the LPSD and
transmits the write request message substantially concur-
rently.

37. In a system having an local data image manager
(LDIM) and a local persistent storage device (LPSD) con-
nected to the LDIM, a method, comprising:

receiving, at the LDIM, data, a request to store the data,

and a first value for identifying a segment of a data
storage medium; and

in response to receiving the data, the request to store the

data, and the value, performing the steps of:

sending to the LPSD from the L.DIM, the data, a second
value for identifying a segment of a data storage
medium, and a request to store the data; and

transmitting, via a network, a message to a remote
system, wherein the message includes the data and a
request for the remote system to store the data.

38. The method of claim 37, wherein the first value is a
sector value for identifying a sector.

39. The method of claim 37, wherein the LPSD is a hard
disk drive.

40. The method of claim 37, wherein the sending and
transmitting steps are performed substantially concurrently.

41. The method of claim 37, further wherein the second
value is not equal to the first value.

42. The method of claim 41, further comprising the step
of determining the second value based on the first value.

43. The method of claim 37, wherein the LPSD comprises
one of a hard disk, a read/write CD, a ZIP disk, a JAZ disk,
and a floppy disk.

44. The method of claim 37, wherein the data included in
the message transmitted to the remote system is encrypted
data.

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 1 of 11 PagelD #: 185

EXHIBIT C

case L arpaos Becment = RN TR AAR A APl

US006732359B1
a2z United States Patent (10) Patent No.: US 6,732,359 B1
Kirkpatrick et al. 5) Date of Patent: May 4, 2004
(54) APPLICATION PROCESS MONITOR (56) References Cited
(75) Inventors: Mark Kirkpatrick, Conyers, GA (US); U.S. PATENT DOCUMENTS
Darin J. Morrow, Acworth, GA (US) 5715389 A * 2/1998 Komoriccccceeeveeenen. 714/47
5,748,468 A * 5/1998 Notenboom et al. 700/3
(73) Assignee: BellSouth Intellectual Property 5,835,765 A * 11/1998 Matsumoto 709/102
Corporation, Wilmington, DE (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—Majid A. Banankhah
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—Woodcock Washburn LLP
U.S.C. 154(b) by 0 days. (57) ABSTRACT
(21) Appl. No.: 09/468,446 A computer system has a memory, an operating system, and
(22) Filed: Dec. 21, 1999 a computer application 1nstant1ateq in a work space in .the
memory as managed by the operating system. The applica-
. tion includes a plurality of application processes running in
(51) Int. CL7 e GO6F 9/00 the work space. An application monitor monitors whether
each of the plurality of application processes is in fact
(52) US.CL .. 718/102; 718/104; 718/107 running, and automatically attempts to remedy an occur-
rence where any of the plurality of application processes is
(58) Field of Searchc.cccoceuvveiine. 709/104, 107, not in fact running.

709/100, 101, 102, 103; 717/27, 127; 718/100,

101, 102, 103, 104, 105, 106, 107

RUN APPLICATION MONITOR - 201

'

MONITOR WHETHER EACH AP. PROC. IS RUNNING — COMPARE
APP. PROC. STATUS INFO. WITH EACH LISTED AP. PROC. - 203

A

AUTOMATICALLY ATTEMPT TO REMEDY NON-RUNNING
APPLICATION PROCESSES ~ PERFORM RE-START -205

Y v v
SHUT DOWN AND | | SHUT DOWN EACH
APPLICATION
RE-START
PROCESS IN
APPLICATION — REVERSE ORDER
RE-START EACH | | SHUT DOWN EACH
UNTIL POINT AND
NON-RUNNING APPLICATION ST A
APPLICATION PROCESS IN il lOCH
PROCESS - 205A REVERSE ORDER TION
PROCESS FROM
AS LISTED IN ey
CONFIGURATION | [PONTIR
FILE - 2058 o

I I

A 4

CHECK AFTER RE-START TO DETERMINE WHETHER EACH
APPLICATION PROCESS IS RUNNING - 207

Y

CREATE AND STORE RECORD OF RE-START - 209

l

ISSUE EMERGENCY NOTIFICATION IF REPEATED RE-STARTS
OCCUR - 211

59 Claims, 2 Drawing Sheets

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 3 of 11 PagelD #: 187

US 6,732,359 Bl

U.S. Patent May 4, 2004 Sheet 1 of 2
OPERATING
SYSTEM 14
CONFIG. FILE AP. PROC.
22 STAT. INFO. 24
RE-START
JOURNAL 26
APPLICATION
MONITOR 10
AP. PROC. A AP. PROC. B
18 18
AP. PROC. C AP. PROC. D
18 18
APPLICATION 16
WORK SPACE 20
MEMORY 13
COMPUTER 12

FIG. 1

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 4 of 11 PagelD #: 188

U.S. Patent May 4, 2004 Sheet 2 of 2 US 6,732,359 B1

RUN APPLICATION MONITOR - 201

Y

MONITOR WHETHER EACH AP. PROC. IS RUNNING — COMPARE
APP. PROC. STATUS INFO. WITH EACH LISTED AP. PROC. - 203

\

AUTOMATICALLY ATTEMPT TO REMEDY NON-RUNNING
APPLICATION PROCESSES — PERFORM RE-START -205
I
v L] L
SHUT DOWN AND SHUT DOWN EACH
APPLICATION
RE-START
PROCESS IN
APPLICATION — REVERSE ORDER
RE-START EACH SHUT DOWN EACH
UNTIL POINT AND
NON-RUNNING APPLICATION RE-START EACH
APPLICATION PROCESS IN A;:’PLICATION
PROCESS - 205A REVERSE ORDER
PROCESS FROM
AS LISTED IN POINT IN
CONFIGURATION FORWARD ORDER -
FILE - 205B 205C

\ 4
CHECK AFTER RE-START TO DETERMINE WHETHER EACH
APPLICATION PROCESS IS RUNNING - 207

'

CREATE AND STORE RECORD OF RE-START - 209

h J

ISSUE EMERGENCY NOTIFICATION IF REPEATED RE-STARTS
OCCUR - 211

FIG. 2

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 5 of 11 PagelD #: 189

US 6,732,359 B1

1
APPLICATION PROCESS MONITOR

FIELD OF THE INVENTION

The present invention relates to a method and apparatus
for monitoring an application process. In particular, the
present invention relates to monitoring the constituent com-
ponents of an application and responding to failures in the
operation thereof.

BACKGROUND OF THE INVENTION

Typically, a computer system/computer has an operating
system, and a computer application is instantiated on the
computer in the form of one or more application processes
running in a work space managed by the operating system.
This is especially true with regards to large and/or complex
applications, such as an application for managing one or
more aspects of a factory, for controlling environmental
conditions in a large building, for controlling power gen-
eration in a power facility, etc.

For any of a variety of reasons, an application process can
fail. For example, an application process can fail if a needed
resource is not available, if an expected piece of information
is missing, or if an impermissible operation is performed,
among other things. While such a failure does not neces-
sarily cause the entire application to fail immediately, such
failure of such entire application is likely to be inevitable.

As should be evident, failure of an entire application can
be annoying to a system operator to say the least, and can
cause critical and even fatal damage to say the most. In the
most benign situation, a computer operator must somehow
be informed that the application has failed and then must
re-start the application on the computer. Of course, if the
operator must be summoned at an inopportune hour, and/or
if the operator must travel a relatively long distance to an
appropriate location to command the re-start, even the most
benign situation can become very costly and/or highly
troublesome. In the most ominous situation, the failure of
the application can lead to loss of life, if for example the
application controls medical equipment in a hospital; loss of
property, if for example the application controls environ-
mental equipment in a sensitive location; and/or other dan-
gerous situations.

Accordingly, a need exists for a method and apparatus for
monitoring the application processes that comprise an appli-
cation running on an operating system, and for automatically
attempting to address the failure of an application process
before such failure causes the failure of the entire applica-
tion.

SUMMARY OF THE INVENTION

In the present invention, a computer system has a
memory, an operating system, and a computer application
instantiated in a work space in the memory as managed by
the operating system. The application includes a plurality of
application processes running in the work space. An appli-
cation monitor monitors whether each of the plurality of
application processes is in fact running, and automatically
attempts to remedy an occurrence where any of the plurality
of application processes is not in fact running.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description of preferred embodiments of the present
invention, will be better understood when read in conjunc-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion with the appended drawings. For the purpose of illus-
trating the invention, there are shown in the drawings
embodiments which are presently preferred. As should be
understood, however, the invention is not limited to the
precise arrangements and instrumentalities shown. In the
drawings:

FIG. 1 is a block diagram showing an application monitor
operating in conjunction with a plurality of application
processes constituting an application on a computer in
accordance with one embodiment of the present invention;
and

FIG. 2 is a flow chart depicting steps employed by the
application monitor of FIG. 1 in accordance with one
embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Referring now to FIG. 1, an application monitor 10 is
shown in accordance with one embodiment of the present
invention. As seen, the application monitor 10 runs on a
computer system/computer 12 or the like, and therefore may
be embodied in the form of appropriate computer software.
Of course, the application monitor 10 may also be embodied
in the form of appropriate hardware or a combination of
appropriate hardware and software without departing from
the spirit and scope of the present invention.

As was discussed above, the computer 12 typically has a
memory 13 and an operating system 14, and a computer
application 16 is instantiated on the computer 12 in the form
of one or more application processes 18 running in a work
space 20 in the memory 13 as managed by the operating
system 14 and set aside specifically for the application 16.
Notably, any appropriate computer 12, operating system 14,
and application 16 may be employed without departing from
the spirit and scope of the present invention. For example,
the computer 12 may be a mainframe computer, a mini-
computer, a desktop- or laptop-based personal computer, or
the like; the operating system may be a LINUX-based
operating system, a WINDOWS-based operating system, a
UNIX-based operating system, or some other operating
system; and the application may be a banking system an
environmental control system, a physical plant control
system, a factory operation system, a medical facility opera-
tion system, or another application.

As shown, the operating system 14 may be operating
separately from the memory 13, or may be operated in the
memory 13. Such memory 13 may be any type of computer
memory, such as RAM, ROM, a hard disk drive, a remov-
able disk drive, a CD-ROM drive, or combinations thereof,
without departing from the spirit and scope of the present
invention.

Typically, when an operator commands the operating
system 14 of a computer 12 to instantiate an application 16,
such operating system 14 performs a number of procedures.
In one of such procedures, the operating system 14 locates
a configuration file 22 for the application 16 in the memory
13, and then processes the located configuration file 22. In
particular, the configuration file includes a list of the appli-
cation processes 18 that are to be run as part of instantiating
the application 16. For example, the configuration file 22 for
a particular application 16 may include the following com-
mands:

RUN APPLICATION PROCESS A
RUN APPLICATION PROCESS B

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 6 of 11 PagelD #: 190

US 6,732,359 B1

3
RUN APPLICATION PROCESS C
RUN APPLICATION PROCESS D

As should be apparent from FIG. 1, the processing of the
aforementioned configuration file 22 creates such applica-
tion processes A—D in the work space 20 set aside for the
application 16 by the operating system 14 of the computer
12. Of course, any particular configuration file 22 may be
employed without departing from the spirit and scope of the
present invention, and such configuration file 22 may con-
tain other commands, again without departing from the spirit
and scope of the present invention.

Depending on the application 16, the constituent appli-
cation processes 18 thereof may work independently of each
other. That is, the operation of each application process 18
does not affect the operation of any other application process
18. More likely, though, at least some of the constituent
application processes 18 of the application 16 are dependent
on other application processes 18. That is, for at least some
of the application processes 18, the operation of each such
application process 18 relies at least in part on the operation
of at least one other application process 18. Accordingly, if
a first application process 18 fails and therefore does not
perform a particular function, a second application process
that is depending on the first application process 18 to
perform the particular function will likely in turn fail. Since
a third application process 18 may be dependent on the
second application process 18, a fourth application process
18 may be dependent on the third application process 18,
etc., such third, fourth, and further application processes will
likely eventually fail, too, until the underlying application 16
collapses and grinds to a halt. As may be appreciated, such
a cascade of failures can occur over a relatively short period
(a millisecond, for example) or a relatively long period
(days, for example).

In one embodiment of the present invention, in addition to
running each application process 18 as specified in the
configuration file 22 to create such application process 18 in
the work space 20 of the application 16, the operating
system 14 of the computer 12 also runs the aforementioned
application monitor 10 to create such application monitor 10
(step 201, FIG. 2). As should be understood, the application
monitor 10 is for monitoring the application 16, and in
particular is for monitoring whether each constituent appli-
cation process 18 is running (step 203, FIG. 2).

As shown, the application monitor 10 for the application
16 may be created by the operating system 14 in the work
space 20 of the application 16. However, such application
monitor 10 may also be created elsewhere without departing
from the spirit and scope of the present invention. Further,
the running of the application monitor 10 may take place in
the course of processing the configuration file 22, or may
take place separately. If separately, an application script or
the like associated with the application 16 may include
commands such as:

RUN CONFIGURATION FILE

RUN APPLICATION MONITOR
Such application script thus causes the operating system 14
to locate and process the configuration file 22 and also to
locate and run the application monitor 10.

In one embodiment of the present application, the appli-
cation monitor 10 periodically checks with the operating
system 14 to determine whether each application process 18
is still running. The actual frequency of the checks may of
course vary without departing from the spirit and scope of

10

25

35

45

50

55

60

65

4

the present invention, and may be a function of such factors
as the degree of reliability of the application 16, the criti-
cality of the application 16, system resources available, the
mean time for a failure of an application process 18 to cause
a failure of the entire application 16, and the like.

In operation, the application monitor 10 is aware of each
application process 18 listed in the configuration file 22 for
the application 16, and refers to application process status
information 24 maintained by the operating system 14 in the
memory 13 (and perhaps even in the work space 20) to
ascertain whether each such application process 18 is still
running. The application monitor 10 may be made aware of
each application process 18 listed in the configuration file 22
in any of several ways without departing from the spirit and
scope of the present application. For example, the applica-
tion monitor 10 may be specifically programmed with the
name of each such application process 18, or may be
provided with the capability to read the name of each
application process from the configuration file 22, among
other things.

The application process status information 24 maintained
by the operating system 14 includes the name of each
application process 18 currently running or the equivalent,
and perhaps further information as to the status of each such
application process 18 (i.e., ‘running’, ‘standby’, etc.). Such
information 24 is likely organized in a table and stored by
the operating system 14 in an appropriate location such as
the memory 13, as shown. If an application process 18 has
failed, it may be listed in the information 24 as such, or as
some variation thereof (‘failed’, ‘not responding’, e.g.).
Alternatively, such a failed application process 18 may not
be listed in the information 24 at all. Thus, to ascertain
whether each application process 18 of the application 16 is
still running, the application monitor 10 in essence checks
that each application process 18 as listed in the configuration
file 22 for the application 16 is also listed in the application
process status information 24 as running or the equivalent
(i.e., ‘running’, ‘standby’, etc., and not ‘failed’, ‘not
responding’, ete.) (step 203, FIG. 2).

If each such application process 18 of the application 16
is in fact still running or the equivalent, the application
monitor 10 need take no action except to remind itself to
perform another check after the specified period has passed.
However, if one or more of the application processes 18 of
the application 16 have stopped, either due to failure or
otherwise, the application monitor 10 attempts to address
and remedy the situation, as will be explained in more detail
as follows (step 205, FIG. 2).

In one embodiment of the present invention, addressing
and remedying the situation involves the application monitor
10 executing a command in cooperation with the operating
system 14 to re-start each failed application process 18 (step
205A, FIG. 2). Notably, though, application processes 18
often must be started in a particular sequence, such as that
specified in the configuration file 22, owing to their depen-
dent nature. Accordingly, re-starting a particular application
process 18 out of sequence may not be successful, and in fact
could cause other application processes to fail. Accordingly,
such re-starting of a particular application process 18 is
preferably immediately followed by the application monitor
10 re-checking with the operating system 14 to determine
whether each application process 18 is still running (step
207, FIG. 2).

In one embodiment of the present invention, if the afore-
mentioned re-start of particular application processes 18 is
unsuccessful, or as an alternative thereto, addressing and
remedying the situation involves the application monitor 10

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 7 of 11 PagelD #: 191

US 6,732,359 B1

5

causing the application 16 to shut down by causing each
application process 18 thereof to shut down, and then
causing the application to re-start in the normal manner, i.c.,
according to a command to the operating system 14 of the
computer 12 to again instantiate the application 16 (step
205B, FIG. 2). Accordingly, such operating system 14 would
then perform normal start-up procedures for the application,
including locating and processing the configuration file 22
for the application 16, and if necessary or desirable again
running the application monitor 10.

Such shut-down may be as simple as immediately killing
all of the application processes 18 of the application 16 in no
particular order or sequence and without any attempt to save
any data. However, such a ‘kill’ shut-down may be quite
radical and needlessly harsh in most circumstances. In one
embodiment of the present invention, the shut-down is
controlled as much as possible and is done in an orderly
manner in an attempt to save as much data as possible.
Accordingly, such a ‘controlled’ shut-down is in a manner
similar to if not identical with a normal shut-down of the
application 16, excepting of course the fact that one or more
constituent application processes 18 are already de facto
shut down. Such controlled shut-down may be directed by
the application 16 itself or by the application monitor 10 if
the application 16 is unable or willing to shut itself down.
Accordingly, in such a situation, the application monitor 10
includes appropriate controlled shut-down procedures and is
capable of executing such procedures in cooperation with
the operating system 14.

Such shut-down procedures may comprise shutting down
each application process in the reverse order/sequence as
listed in the configuration file 22 (i.e., Application Process
D, Application Process C, Application Process B, etc.). In
such a situation, it is preferable that the application monitor
10 not be run in the course of processing the configuration
file 22. Otherwise, the application monitor 10 could shut
itself down prematurely. Once the application 16 is fully
shut down, the application monitor 10, which should still be
running, then can execute an appropriate start-up command
in cooperation with the operating system 14. The application
monitor 10 may then shut itself down in anticipation of
being re-started by the operating system 14 in the course of
re-starting the application 16, or may leave itself running.

In one embodiment of the present invention, if the afore-
mentioned re-start of particular application processes 18 is
unsuccessful, or as an alternative thereto, addressing and
remedying the situation involves the application monitor 10
executing a command in cooperation with the operating
system 14 to partially shut down the application 16 to the
point of the failed application process 18, and then
re-starting from such point (step 205C, FIG. 2). That is,
remembering that the application processes 18 were started
in a particular order/sequence as specified in the configura-
tion file 22 (i.e., Application Process A, Application Process
B, Application Process C, etc.), such application processes
18 are shut down in the reverse order/sequence (i.e., Appli-
cation Process D, Application Process C, Application Pro-
cess B, etc.) until the point where all of the failed application
processes 18 would have been shut down. Thereafter, the
application monitor 10 causes the application 16 to re-start
from that point according to the particular order/sequence as
specified in the configuration file 22.

Owing to the fact that such a ‘partial’ shut-down and
re-start may not be successful for any of a variety of reasons,
such partial re-start of the application 16 is preferably
immediately followed by the application monitor 10
re-checking with the operating system 14 to determine

10

15

20

25

30

35

40

45

50

55

60

65

6

whether each application process 18 is still running. If in fact
the partial re-start was unsuccessful, a controlled shut-down
and re-start should be performed (step 207, FIG. 2).

In one embodiment of the present invention, a record of
each re-start/shut-down, including all appropriate
information, is created and stored in a re-start/shut-down
journal 26 located in the memory 13 of the computer 12 or
elsewhere (step 209, FIG. 2). Thus, an operator and/or
programmer may review the journal 26 to diagnose the
cause of any repeated application shut-downs. If a repeated
shut-downs occur, or if re-starts are repeatedly unsuccessful,
the application monitor 10 may cause an emergency notifi-
cation or the like to be issued to appropriate personnel by
way of an electronic mail message, an electronic telephone
message, a telephone call to a beeper number, a radio
message, a warning buzzer, etc. (step 211, FIG. 2).

The programming necessary to effectuate the present
invention, such as the programming run by the application
monitor 10, the operating system 14, and the application 16
and application processes 18 thereof, is known or is readily
apparent to the relevant public. Accordingly, further details
as to the specifics of such programming are not believed to
be necessary herein.

As should now be understood, in the present invention, a
method and apparatus are provided to monitor the applica-
tion processes 18 that comprise an application 16 running on
an operating system 14 of a computer 12, and for automati-
cally attempting to address the failure of an application
process 18 before such failure causes the failure of the entire
application 16. Changes could be made to the embodiments
described above without departing from the broad inventive
concepts thereof. It is understood, therefore, that this inven-
tion is not limited to the particular embodiments disclosed,
but it is intended to cover modifications within the spirit and
scope of the present invention as defined by the appended
claims.

What is claimed is:

1. A computer system having a memory, an operating
system, a computer application instantiated in a work space
in the memory as managed by the operating system, the
application including a plurality of application processes
running in the work space, and an application monitor
monitoring whether each of the plurality of application
processes is in fact running and automatically attempting to
remedy an occurrence where any of the plurality of appli-
cation processes is not in fact running.

2. The computer system of claim 1 wherein the applica-
tion monitor is created by the operating system in the work
space of the application.

3. The computer system of claim 1 wherein the operating
system instantiates the application by processing a configu-
ration file which includes a sequential list of the plurality of
application processes to be run, and wherein the application
monitor is run separately from the processing of the con-
figuration file.

4. The computer system of claim 1 wherein the applica-
tion monitor periodically checks with the operating system
to determine whether each of the plurality of application
processes is in fact running.

5. The computer system of claim 1 wherein if the appli-
cation monitor finds that any of the plurality of application
processes is not in fact running, such application monitor
re-start each non-running application process.

6. The computer system of claim 5 wherein the re-start is
followed by the application monitor checking to determine
whether each application process is in fact running.

7. The computer system of claim § wherein the applica-
tion monitor creates and stores a record of the re-start.

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 8 of 11 PagelD #: 192

US 6,732,359 B1

7

8. The computer system of claim 5 wherein the applica-
tion monitor issues an emergency notification if repeated
re-starts occur.

9. The computer system of claim 8 wherein the applica-
tion monitor issues the emergency notification by way of a
member of a group consisting of an electronic mail message,
an electronic telephone message, a telephone call to a beeper
number, a radio message, and a warning buzzer.

10. The computer system of claim 1 wherein if the
application monitor finds that any of the plurality of appli-
cation processes is not in fact running, such application
monitor shuts down and re-starts the application.

11. The computer system of claim 10 wherein the re-start
is followed by the application monitor checking to deter-
mine whether each application process is in fact running.

12. The computer system of claim 10 wherein the oper-
ating system instantiates the application by processing a
configuration file which includes an ordered list of the
plurality of application processes to be run, and wherein the
shut down comprises shutting down each of the plurality of
application processes in a reverse order as listed in the
configuration file.

13. The computer system of claim 10 wherein the appli-
cation monitor creates and stores a record of the re-start.

14. The computer system of claim 10 wherein the appli-
cation monitor issues an emergency notification if repeated
re-starts occur.

15. The computer system of claim 14 wherein the appli-
cation monitor issues the emergency notification by way of
a member of a group consisting of an electronic mail
message, an electronic telephone message, a telephone call
to a beeper number, a radio message, and a warning buzzer.

16. The computer system of claim 1 wherein the operating
system instantiates the application by processing a configu-
ration file which includes an ordered list of the plurality of
application processes to be run, and wherein if the applica-
tion monitor finds that any of the plurality of application
processes is not in fact running, such application monitor
shuts down each of the plurality of application processes in
a reverse order as listed in the configuration file until a point
where all of the non-running application processes would
have been shut down, and then re-starts each of the plurality
of application processes from the point in a forward order as
listed in the configuration file.

17. The computer system of claim 16 wherein the re-start
is followed by the application monitor checking to deter-
mine whether each application process is in fact running.

18. The computer system of claim 16 wherein the appli-
cation monitor creates and stores a record of the re-start.

19. The computer system of claim 16 wherein the appli-
cation monitor issues an emergency notification if repeated
re-starts occur.

20. The computer system of claim 19 wherein the appli-
cation monitor issues the emergency notification by way of
a member of a group consisting of an electronic mail
message, an electronic telephone message, a telephone call
to a beeper number, a radio message, and a warning buzzer.

21. An application monitor employed in connection with
a computer system having a memory, an operating system,
and a computer application instantiated in a work space in
the memory as managed by the operating system, the
application including a plurality of application processes
running in the work space, the application monitor moni-
toring whether each of the plurality of application processes
is in fact running and automatically attempting to remedy an
occurrence where any of the plurality of application pro-
cesses is not in fact running.

10

15

20

25

30

40

45

50

55

60

65

8

22. The application monitor of claim 21 wherein the
application monitor is created by the operating system in the
work space of the application.

23. The application monitor of claim 21 wherein the
operating system instantiates the application by processing a
configuration file which includes a sequential list of the
plurality of application processes to be run, and wherein the
application monitor is run separately from the processing of
the configuration file.

24. The application monitor of claim 21 wherein the
application monitor periodically checks with the operating
system to determine whether each of the plurality of appli-
cation processes is in fact running.

25. The application monitor of claim 21 wherein if the
application monitor finds that any of the plurality of appli-
cation processes is not in fact running, such application
monitor re-starts each non-running application process.

26. The application monitor of claim 25 wherein the
re-start is followed by the application monitor checking to
determine whether each application process is in fact run-
ning.

27. The application monitor of claim 25 wherein the
application monitor creates and stores a record of the
re-start.

28. The application monitor of claim 25 wherein the
application monitor issues an emergency notification if
repeated re-starts occur.

29. The application monitor of claim 28 wherein the
application monitor issues the emergency notification by
way of a member of a group consisting of an electronic mail
message, an electronic telephone message, a telephone call
to a beeper number, a radio message, and a warning buzzer.

30. The application monitor of claim 21 wherein if the
application monitor finds that any of the plurality of appli-
cation processes is not in fact running, such application
monitor shuts down and re-starts the application.

31. The application monitor of claim 30 wherein the
re-start is followed by the application monitor checking to
determine whether each application process is in fact run-
ning.

32. The application monitor of claim 30 wherein the
operating system instantiates the application by processing a
configuration file which includes an ordered list of the
plurality of application processes to be run, and wherein the
shut down comprises shutting down each of the plurality of
application processes in a reverse order as listed in the
configuration file.

33. The application monitor of claim 30 wherein the
application monitor creates and stores a record of the
re-start.

34. The application monitor of claim 30 wherein the
application monitor issues an emergency notification if
repeated re-starts occur.

35. The application monitor of claim 34 wherein the
application monitor issues the emergency notification by
way of a member of a group consisting of an electronic mail
message, an electronic telephone message, a telephone call
to a beeper number, a radio message, and a warning buzzer.

36. The application monitor of claim 21 wherein the
operating system instantiates the application by processing a
configuration file which includes an ordered list of the
plurality of application processes to be run, and wherein if
the application monitor finds that any of the plurality of
application processes is not in fact running, such application
monitor shuts down each of the plurality of application
processes in a reverse order as listed in the configuration file
until a point where all of the non-running application

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 9 of 11 PagelD #: 193

US 6,732,359 B1

9

processes would have been shut down, and then re-starts
each of the plurality of application processes from the point
in a forward order as listed in the configuration file.

37. The application monitor of claim 36 wherein the
re-start is followed by the application monitor checking to
determine whether each application process is in fact run-
ning.

38. The application monitor of claim 36 wherein the
application monitor creates and stores a record of the
re-start.

39. The application monitor of claim 36 wherein the
application monitor issues an emergency notification if
repeated re-starts occur.

40. The application monitor of claim 39 wherein the
application monitor issues the emergency notification by
way of a member of a group consisting of an electronic mail
message, an electronic telephone message, a telephone call
to a beeper number, a radio message, and a warning buzzer.

41. In a computer system having a memory, an operating
system, and a computer application instantiated in a work
space in the memory as managed by the operating system,
the application including a plurality of application processes
running in the work space, a method comprising:

monitoring whether each of the plurality of application
processes is in fact running; and

automatically attempting to remedy an occurrence where
any of the plurality of application processes is not in
fact running.

42. The method of claim 41 comprising creating an
application monitor in the work space of the application to
perform the monitoring and attempting steps.

43. The method of claim 41 comprising periodically
checking with the operating system to determine whether
each of the plurality of application processes is in fact
running.

44. The method of claim 41 comprising, if any of the
plurality of application processes is not in fact running,
re-starting each non-running application process.

45. The method of claim 44 comprising checking after the
re-start to determine whether each application process is in
fact running.

46. The method of claim 44 comprising creating and
storing a record of the re-start.

47. The method of claim 44 comprising issuing an emer-
gency notification if repeated re-starts occur.

48. The method of claim 47 comprising issuing the
emergency notification by way of a member of a group
consisting of an electronic mail message, an electronic

10

15

20

25

30

35

45

10

telephone message, a telephone call to a beeper number, a
radio message, and a warning buzzer.

49. The method of claim 41 comprising, if any of the
plurality of application processes is not in fact running,
shutting down and re-starting the application.

50. The method of claim 49 comprising checking after the
re-start to determine whether each application process is in
fact running.

51. The method of claim 49 wherein the operating system
instantiates the application by processing a configuration file
which includes an ordered list of the plurality of application
processes to be run, the method comprising shutting down
each of the plurality of application processes in a reverse
order as listed in the configuration file.

52. The method of claim 49 comprising creating and
storing a record of the re-start.

53. The method of claim 49 comprising issuing an emer-
gency notification if repeated re-starts occur.

54. The method of claim 53 comprising issuing the
emergency notification by way of a member of a group
consisting of an electronic mail message, an electronic
telephone message, a telephone call to a beeper number, a
radio message, and a warning buzzer.

55. The method of claim 41 wherein the operating system
instantiates the application by processing a configuration file
which includes an ordered list of the plurality of application
processes to be run, the method comprising, if any of the
plurality of application processes is not in fact running,
shutting down each of the plurality of application processes
in a reverse order as listed in the configuration file until a
point where all of the non-running application processes
would have been shut down, and then re-starting each of the
plurality of application processes from the point in a forward
order as listed in the configuration file.

56. The method of claim 55 comprising checking after the
re-start to determine whether each application process is in
fact running.

57. The method of claim 55 comprising creating and
storing a record of the re-start.

58. The method of claim 55 comprising issuing an emer-
gency notification if repeated re-starts occur.

59. The method of claim 58 comprising issuing the
emergency notification by way of a member of a group
consisting of an electronic mail message, an electronic
telephone message, a telephone call to a beeper number, a
radio message, and a warning buzzer.

#* #* #* #* #*

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 10 of 11 PagelD #: 194

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,732,359 Bl Page 1 of 2
APPLICATION NO. : 09/468446

DATED : May 4, 2004

INVENTOR(S) : Mark Kirkpatrick and Darin J. Morrow

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Col. 6, lines 37-45 (Claim 1) should read:

1. A computer system having a memory, an operating system, a computer
application instantiated in a work space in the memory as managed by the operating
system, the application including a plurality of application processes running in the
work space, and an application monitor monitoring whether each of the plurality of
application processes is in fact running and automatically attempting to remedy an
occurrence where any of the plurality of application processes is not in fact running,

wherein the application monitor is aware of each of the plurality of application
processes and refers to application process status information as maintained by the
operating system to ascertain whether each such application process is in fact running,

wherein the operating system instantiates the application by processing a
configuration file which includes a sequential list of the plurality of application
processes to be run, and wherein the application monitor is aware of each application
process listed in the configuration file, and

wherein the application process status information maintained by the operating
system includes each application process currently running.

Col. 7, lines 58-67 (Claim 21) should read as follows:

21. An application monitor employed in connection with a computer
system having a memory, an operating system, and a computer application instantiated
in a work space in the memory as managed by the operating system, the application
including a plurality of application processes running in the work space, the application
monitor monitoring whether each of the plurality of application processes is in fact
running and automatically attempting to remedy an occurrence where any of the
plurality of application processes is not in fact running,

wherein the application monitor is aware of each of the plurality of application
processes and refers to application process status information as maintained by the
operating system to ascertain whether each such application process is in fact running,

wherein the operating system instantiates the application by processing a
configuration file which includes a sequential list of the plurality of application
processes to be run, and wherein the application monitor is aware of each application
process listed in the configuration file, and

wherein the application process status information maintained by the operating
system includes each application process currently running.

Case 1:13-cv-00440-LPS Document 6-3 Filed 03/26/13 Page 11 of 11 PagelD #: 195

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,732,359 Bl Page 2 of 2
APPLICATION NO. : 09/468446

DATED : May 4, 2004

INVENTOR(S) : Mark Kirkpatrick and Darin J. Morrow

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Col. 9, lines 19-28 (Claim 41) should read as follows:

41. In a computer system having a memory, an operating system, and a
computer application instantiated in a work space in the memory as managed by the
operating system, the application including a plurality of application processes running
in the work space, a method comprising:

monitoring whether each of the plurality of application processes is in fact
running; and

automatically attempting to remedy an occurrence where any of the plurality of
application processes is not in fact running,

the method comprising referring to application process status information as
maintained by the operating system to ascertain whether each such application process
is in fact running,

wherein the operating system instantiates the application by processing a
configuration file which includes a sequential list of the plurality of application
processes to be run, the method comprising comparing the application process status
information and each application process listed in the configuration file.

Signed and Sealed this

Seventeenth Day of October, 2006

o W D

JON W. DUDAS
Director of the United States Patent and Trademark Office

	1
	2
	3
	4

